The Integrated Training in Pharmacological Sciences program at Mount Sinai aims to provide rigorous interdisciplinary pre-doctoral training in the fundamental mechanisms that control physiological and pathophysiological processes and drug action. It is the goal of this program to provide educational activities and research training that connect the basic mechanistic findings to therapeutic modalities including the identification of drug targets and development of lead therapeutic compounds. The training program seeks to achieve in-depth training coupled with a broad perspective that equips the trainees to incorporate emerging new areas throughout their careers. The program also seeks to create a learning environment that promotes independent thinking and individual analytical skills, while fostering the ability to work in collaborative learning and research environments. The program combines a core of integrated didactic training in Pharmacology and Systems Biology that provides grounding in core principles of biochemistry, structural biology, genetics, cellular and molecular biology within a context of physiology and disease pathophysiology. Computational and modeling approaches to systems problems at various scales, to large data sets and to epidemiological problems are introduced throughout, together with support that enables students with different entering levels of quantitative skills to succeed. This curriculum uses an integrated active learning approach in both basic and advanced courses that is enhanced by specific pedagogical innovations. They include asynchronous discussions as well as in-class discussions and use of peer evaluation methodologies that prepare students for this major feature of their future careers. The 49 participating faculty of this training program are drawn from 13 academic departments and institutes that include a mix of clinical and basic science emphases. Their research projects provide opportunities for program trainees to tackle important problems in diverse areas of biomedicine that have strong pharmacological and/or systems biology interfaces and translational potential. The interdisciplinary and translational training environment and the structure of the program foster the entry of our trainees into independent scientific careers.
Breakthroughs that yield new drugs that ameliorate different human diseases, that yield new diagnostics or new therapeutic strategies depend more and more upon researchers who apply quantitative computational methods to the complex biology of disease and drug interactions.
We aim to foster these skills in talented PhD and MD/PhD students, enabling them to achieve the next generation of breakthroughs.
Showing the most recent 10 out of 113 publications