This application represents a new multi-disciplinary predoctoral training program in the Pharmacological Sciences at the New York University (NYU) School of Medicine. The Program is broad based and provides training in the area of molecular pharmacology, signaling, pharmacology of the nervous system, protein structure of receptors, and elements of environmental medicine/toxicology. To achieve this aim, the Program has included 25 faculty members from both basic science and clinical departments at the medical school, whose research interests lay in the field of Pharmacology. The training faculty members have many overlapping research interests, which ensure that predoctoral trainees are part of a strong intellectual environment larger than the individual laboratories. The program faculty are located in the Departments of Pharmacology, Cell Biology, Environmental Medicine/Toxicology, Psychiatry, Medicine, Microbiology, and, Physiology/Neuroscience. The laboratories draw students who directly apply to the Pharmacological Sciences Training Program and from an open graduate program operated by the Sackler Institute of Graduate Biomedical Sciences at the NYU School of Medicine. The entire faculty has attracted highly qualified students and postdoctoral fellows. The program faculty members all belong to the Sackler Institute. Trainees will participate in a number of core and advanced courses, weekly seminars, work-in-progress sessions, journal clubs and tutorials intended to ensure broad exposure to molecular pharmacology and the pharmacological sciences. Collaborations between trainees and participating faculty will be encouraged starting with initial laboratory rotations and continuing with mentoring of dissertation studies by individual faculty members. The goal of this program is to provide a strong, broad based training of predoctoral students who will develop into productive, competitive and creative scientists capable of making important contributions to the field of Pharmacology and its application to human disease. ? ?
Radke, Emily E; Brown, Stuart M; Pelzek, Adam J et al. (2018) Hierarchy of human IgG recognition within the Staphylococcus aureus immunome. Sci Rep 8:13296 |
Peng, Katherine Y; Pérez-González, Rocío; Alldred, Melissa J et al. (2018) Apolipoprotein E4 genotype compromises brain exosome production. Brain : |
Kaur, Gurjinder; Gauthier, Sebastien A; Perez-Gonzalez, Rocio et al. (2018) Cystatin C prevents neuronal loss and behavioral deficits via the endosomal pathway in a mouse model of down syndrome. Neurobiol Dis 120:165-173 |
Billerbeck, Sonja; Brisbois, James; Agmon, Neta et al. (2018) A scalable peptide-GPCR language for engineering multicellular communication. Nat Commun 9:5057 |
Grmai, Lydia; Hudry, Bruno; Miguel-Aliaga, Irene et al. (2018) Chinmo prevents transformer alternative splicing to maintain male sex identity. PLoS Genet 14:e1007203 |
Ricarte, Florante R; Le Henaff, Carole; Kolupaeva, Victoria G et al. (2018) Parathyroid hormone(1-34) and its analogs differentially modulate osteoblastic Rankl expression via PKA/SIK2/SIK3 and PP1/PP2A-CRTC3 signaling. J Biol Chem 293:20200-20213 |
de la Parra, Columba; Walters, Beth A; Geter, Phillip et al. (2018) Translation initiation factors and their relevance in cancer. Curr Opin Genet Dev 48:82-88 |
Shekhar, Akshay; Lin, Xianming; Lin, Bin et al. (2018) ETV1 activates a rapid conduction transcriptional program in rodent and human cardiomyocytes. Sci Rep 8:9944 |
Shen, Michael J; Wu, Yi; Yang, Kun et al. (2018) Heterozygous diploid and interspecies SCRaMbLEing. Nat Commun 9:1934 |
Weber, Hannah; Garabedian, Michael J (2018) The mediator complex in genomic and non-genomic signaling in cancer. Steroids 133:8-14 |
Showing the most recent 10 out of 59 publications