This proposal seeks support for a training program at the Chemistry-Biology Interface (CBI) at Johns Hopkins University. The goal is to train predoctoral students to carry out biomedical research using the tools of Chemistry and Biology. The Program is a collaborative effort between faculty in the Departments of Biochemistry and Molecular Biology (Bloomberg School of Public Health) and Pharmacology and Molecular Sciences (School of Medicine), with their colleagues in the Biology and Chemistry Departments (Zanvyl Krieger School of Arts &Sciences). Student participants will have a diverse array of research projects including synthesis, mechanism, enzymology, molecular imaging, and biomacromolecular structure to choose from in 26 research groups. The students will receive coursework training in the biological and chemical sciences, including a two-semester course in Chemical Biology designed especially for the Program, but open to all Johns Hopkins University students. Other aspects of the CBI Program include CBI Forum where students will present literature seminars, defend original research proposals, and defend their theses, as well as an Annual Retreat. The CBI Program was initiated in fall 2005 using funding from the University and will consist of 6 students in fall 2006. Support is requested to support 4 graduate students, increasing to 6 students in year 3, as the momentum of the Program increases. An extensive network of support in the form of advising and mentoring is in place to maximize the students'success. Relevance: The roles of chemistry and biology in basic and applied biomedical research are of paramount importance. There is a rapidly increasing need for scientists who can traverse both fields of science. The CBI Program at Johns Hopkins University will train scientists with this ability.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM080189-03
Application #
7881428
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Fabian, Miles
Project Start
2008-07-01
Project End
2013-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
3
Fiscal Year
2010
Total Cost
$174,938
Indirect Cost
Name
Johns Hopkins University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Nye, Dillon B; Lecomte, Juliette T J (2018) Replacement of the Distal Histidine Reveals a Noncanonical Heme Binding Site in a 2-on-2 Hemoglobin. Biochemistry 57:5785-5796
Gonzalez-Gil, Anabel; Porell, Ryan N; Fernandes, Steve M et al. (2018) Sialylated keratan sulfate proteoglycans are Siglec-8 ligands in human airways. Glycobiology 28:786-801
Bartee, David; Freel Meyers, Caren L (2018) Targeting the Unique Mechanism of Bacterial 1-Deoxy-d-xylulose-5-phosphate Synthase. Biochemistry 57:4349-4356
Schatzman, Sabrina S; Culotta, Valeria C (2018) Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens. ACS Infect Dis 4:893-903
de Jonge, Ronnie; Ebert, Malaika K; Huitt-Roehl, Callie R et al. (2018) Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum. Proc Natl Acad Sci U S A 115:E5459-E5466
Cohen, Douglas R; Townsend, Craig A (2018) Characterization of an Anthracene Intermediate in Dynemicin Biosynthesis. Angew Chem Int Ed Engl 57:5650-5654
Bartee, David; Wheadon, Michael J; Freel Meyers, Caren L (2018) Synthesis and Evaluation of Fluoroalkyl Phosphonyl Analogues of 2- C-Methylerythritol Phosphate as Substrates and Inhibitors of IspD from Human Pathogens. J Org Chem 83:9580-9591
Singh, Digvijay; Mallon, John; Poddar, Anustup et al. (2018) Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a). Proc Natl Acad Sci U S A 115:5444-5449
Cohen, Douglas R; Townsend, Craig A (2018) A dual role for a polyketide synthase in dynemicin enediyne and anthraquinone biosynthesis. Nat Chem 10:231-236
Johnson, Eric A; Russo, Miranda M; Nye, Dillon B et al. (2018) Lysine as a heme iron ligand: A property common to three truncated hemoglobins from Chlamydomonas reinhardtii. Biochim Biophys Acta Gen Subj 1862:2660-2673

Showing the most recent 10 out of 82 publications