The goal of the UCLA Training Program in Neuroendocrinology, Sex Differences, and Reproduction is to educate pre- and postdoctoral scholars in research, including the ethical conduct of research, to prepare them for active careers in scientific research and/or teaching. The Training Program unites faculty with diverse expertise in a cooperative educational enterprise to provide a rich educational milieu for trainees. The faculty are outstanding scientists in the fields of genetics, molecular and cell biology, endocrinology, physiology, and behavioral science. The training faculty members of the Laboratory of Neuroendocrinology (LNE), a research unit of the Brain Research Institute, are members of 11 UCLA departments. All faculty are primarily or exclusively involved in research, but four are also physicians and thus bring a clinical perspective to the research of the group. A dominant characteristic of the LNE is active collaboration and interaction among the 15 independent research laboratories, at both the faculty and trainee levels, which considerably enriches the educational milieu for trainees. Trainees have free access to laboratories of all LNE faculty and to other laboratories of a world-class biomedical research center. This proposal requests funds to support 6 predoctoral and 3 postdoctoral scholars per year. Predoctoral students will be appointed for a period up to four years, and postdoctoral trainees for two years. Pre-doctoral trainees must be admitted to one of 7 Ph.D. programs. Postdoctoral candidates apply directly to research mentors. The Training Program provides for weekly brown bag seminars, numerous didactic graduate courses and seminars, the Charles Sawyer Distinguished Lectureship, instruction in ethical conduct of science and career skills, and for intensive mentoring of minority undergraduate students. The target fields of research include study of how the brain and gonads communicate with each other to control reproduction, how hormones affect the ability of the brain to respond to disease, how hormones and sex chromosome genes produce sex differences in the brain and other organs that influences their basic function and susceptibility to disease. The training program will help educate the next generation of scientists who will perform research to provide information that influences how physicians conceptualize and treat specific diseases, and how they treat diseases differently in men and women.

Public Health Relevance

The proposed program will educate trainees to perform scientific research to understand the effects of hormones on the brain, sex differences in the function and diseases of the brain and other organs, and factors that control the ability to reproduce. This research will provide information physiological systems that are influenced by disease, or are protected from disease in one sex. This information will be helpful in developing novel therapies to reduce suffering from diseases of the brain and other organs, including those affecting the ability to reproduce.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Institutional National Research Service Award (T32)
Project #
5T32HD007228-35
Application #
8892836
Study Section
Biobehavioral and Behavioral Sciences Subcommittee (CHHD)
Program Officer
Taymans, Susan
Project Start
1981-07-01
Project End
2017-04-30
Budget Start
2015-05-01
Budget End
2017-04-30
Support Year
35
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Physiology
Type
Schools of Arts and Sciences
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Kammel, Laura G; Wei, Weizheng; Jami, Shekib A et al. (2018) Enhanced GABAergic Tonic Inhibition Reduces Intrinsic Excitability of Hippocampal CA1 Pyramidal Cells in Experimental Autoimmune Encephalomyelitis. Neuroscience 395:89-100
Barseghyan, Hayk; Symon, Aleisha; Zadikyan, Mariam et al. (2018) Identification of novel candidate genes for 46,XY disorders of sex development (DSD) using a C57BL/6J-Y POS mouse model. Biol Sex Differ 9:8
Eaton, Joy; Pradhan, Devaleena S; Barske, Julia et al. (2018) 3?-HSD expression in the CNS of a manakin and finch. Gen Comp Endocrinol 256:43-49
Burkett, Zachary Daniel; Day, Nancy F; Kimball, Todd Haswell et al. (2018) FoxP2 isoforms delineate spatiotemporal transcriptional networks for vocal learning in the zebra finch. Elife 7:
Kim, Roy Y; Mangu, Darian; Hoffman, Alexandria S et al. (2018) Oestrogen receptor β ligand acts on CD11c+ cells to mediate protection in experimental autoimmune encephalomyelitis. Brain 141:132-147
Itoh, Noriko; Kim, Roy; Peng, Mavis et al. (2017) Bedside to bench to bedside research: Estrogen receptor beta ligand as a candidate neuroprotective treatment for multiple sclerosis. J Neuroimmunol 304:63-71
Golden, Lisa C; Voskuhl, Rhonda (2017) The importance of studying sex differences in disease: The example of multiple sclerosis. J Neurosci Res 95:633-643
Mittelman-Smith, Melinda A; Rudolph, Lauren M; Mohr, Margaret A et al. (2017) Rodent Models of Non-classical Progesterone Action Regulating Ovulation. Front Endocrinol (Lausanne) 8:165
Rudolph, L M; Bentley, G E; Calandra, R S et al. (2016) Peripheral and Central Mechanisms Involved in the Hormonal Control of Male and Female Reproduction. J Neuroendocrinol 28:
Rudolph, Lauren M; Cornil, Charlotte A; Mittelman-Smith, Melinda A et al. (2016) Actions of Steroids: New Neurotransmitters. J Neurosci 36:11449-11458

Showing the most recent 10 out of 114 publications