This is a competitive renewal application to support the Stanford Genome Training Program (SGTP), which is one of the first NHGRI-sponsored genome training programs established in 1995. This highly-successful program has supported and trained 101 Graduate Student and Postdoctoral Fellow Trainees since it began;68 of these have been in the program during the current funding period, which began September 2002. The SGTP currently supports 30 Trainees, 25 of whom are Graduate Students and five of whom are Postdoctoral Fellows. This application proposes to continue the SGTP at its current number of Trainees, who will work in the laboratories of 41 Participating Faculty members in nine different departments at Stanford. Research opportunities abound in broad areas of genomics and computational biology, including comparative sequencing and analysis, functional genomics, DNA, protein, and carbohydrate microarray technologies, algorithm development, statistical genetics and genomics, high-throughput genotyping and genetic analysis, evolutionary genomics, pharmacogenetics, developmental biology and many other biological problems that benefit from a genomics perspective. Many projects involve development of new wet-lab as well as computational technologies and tools. The emphasis of the SGTP will continue to be to provide a broad interdisciplinary education to a wide range of Trainees, to serve to coordinate genomic research and training activities throughout the entire campus, and to help disseminate genome science by preparing Trainees for the next steps in their careers. In addition to providing this training, the SGTP proposes an ambitious program for the Minority Action Plan (MAP) and education outreach. The MAP and outreach components, which are already very strong in the SGTP and on the Stanford campus, will expand and ensure the success of our efforts to help increase diversity in our scientific ranks while also providing younger students and the general public with knowledge about science and scientists and how these impact their daily lives.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Institutional National Research Service Award (T32)
Project #
5T32HG000044-13
Application #
7685487
Study Section
Special Emphasis Panel (ZHG1-HGR-M (J1))
Program Officer
Graham, Bettie
Project Start
1995-09-01
Project End
2012-08-31
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
13
Fiscal Year
2009
Total Cost
$1,726,577
Indirect Cost
Name
Stanford University
Department
Genetics
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Breslow, David K; Hoogendoorn, Sascha; Kopp, Adam R et al. (2018) A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nat Genet 50:460-471
Buenrostro, Jason D; Corces, M Ryan; Lareau, Caleb A et al. (2018) Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell 173:1535-1548.e16
Ofir, Gal; Melamed, Sarah; Sberro, Hila et al. (2018) DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol 3:90-98
Deng, Tanggang; Yan, Guobei; Song, Xin et al. (2018) Deubiquitylation and stabilization of p21 by USP11 is critical for cell-cycle progression and DNA damage responses. Proc Natl Acad Sci U S A 115:4678-4683
de la Fuente, Constanza; Ávila-Arcos, María C; Galimany, Jacqueline et al. (2018) Genomic insights into the origin and diversification of late maritime hunter-gatherers from the Chilean Patagonia. Proc Natl Acad Sci U S A 115:E4006-E4012
Karczewski, Konrad J; Snyder, Michael P (2018) Integrative omics for health and disease. Nat Rev Genet 19:299-310
Rappoport, Nadav; Toung, Jonathan; Hadley, Dexter et al. (2018) A genome-wide association study identifies only two ancestry specific variants associated with spontaneous preterm birth. Sci Rep 8:226
Thompson, Abbey C; Capellini, Terence D; Guenther, Catherine A et al. (2018) A novel enhancer near the Pitx1 gene influences development and evolution of pelvic appendages in vertebrates. Elife 7:
Mezger, Anja; Klemm, Sandy; Mann, Ishminder et al. (2018) High-throughput chromatin accessibility profiling at single-cell resolution. Nat Commun 9:3647
Rong-Mullins, Xiaoqing; Ayers, Michael C; Summers, Mahmoud et al. (2018) Transcriptional Profiling of Saccharomyces cerevisiae Reveals the Impact of Variation of a Single Transcription Factor on Differential Gene Expression in 4NQO, Fermentable, and Nonfermentable Carbon Sources. G3 (Bethesda) 8:607-619

Showing the most recent 10 out of 327 publications