This is a competitive renewal application of The Stanford Genome Training Program, which is one of the first NHGRI sponsored program established in 1995. This program has been highly successful and has supported and trained 119 graduate students and 44 postdoctoral fellows since it began; many of these have gone on to become leaders in their field. This application proposes to modestly increase its number of Trainees to 28 predoctoral fellows and 6 postdoctoral fellows from its existing level, consistent with its substantial increase in expansion of the program. There are presently 60 Participating Faculty in 15 different departments at Stanford. Research opportunities abound in broad areas of genomics and computational biology including genome characterization, medical genomics, technology development, comparative genomics, diversity and variation, development genomics, proteomics and metabolomics, gene regulation and systems biology, all with an omics emphasis. Organisms that are studied include yeast, flies, worms, fish, mice, and humans and other primates (chimpanzees, gorillas, and orangutans). The emphasis of the SGTP will be to continue to provide a broad interdisciplinary education to a wide range to trainees, to serve to coordinate genomic research and training activities across the entire campus, and to help disseminate genomic science by preparing Trainees for the next steps in their careers. The program contains many unique elements that prepare Trainees for genomics research and highly successful careers. In addition, the SGTP proposes to continue an active Diversity Action Plan (DAP). The DAP will continue to recruit, retain and train individuals of diverse backgrounds for careers in the genomic sciences.

Public Health Relevance

The field of genomics is a rapidly expanding area that will impact all areas of science including medicine. The SGTP plans to train graduate students and postdoctoral fellows to not only have highly successful careers in this area, but form the next generation of leaders in this field in both academia, industry and related professions.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Institutional National Research Service Award (T32)
Project #
4T32HG000044-20
Application #
9135148
Study Section
Genome Research Review Committee (GNOM-G)
Program Officer
Junkins, Heather
Project Start
1995-09-01
Project End
2017-08-31
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
20
Fiscal Year
2016
Total Cost
$1,452,125
Indirect Cost
$77,935
Name
Stanford University
Department
Genetics
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Koh, Andrew S; Miller, Erik L; Buenrostro, Jason D et al. (2018) Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat Immunol 19:162-172
Zaidan, Hiba; Ramaswami, Gokul; Golumbic, Yaela N et al. (2018) A-to-I RNA editing in the rat brain is age-dependent, region-specific and sensitive to environmental stress across generations. BMC Genomics 19:28
Wang, Bo; Pourshafeie, Armin; Zitnik, Marinka et al. (2018) Network enhancement as a general method to denoise weighted biological networks. Nat Commun 9:3108
Rhee, Siyeon; Chung, Jae I; King, Devin A et al. (2018) Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease. Nat Commun 9:368
Zhang, Haiyang; Wang, Yi; Bai, Ming et al. (2018) Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA. Cancer Sci 109:629-641
Garcia, Victor; Glassberg, Emily C; Harpak, Arbel et al. (2018) Clonal interference can cause wavelet-like oscillations of multilocus linkage disequilibrium. J R Soc Interface 15:
Gowans, Graeme J; Schep, Alicia N; Wong, Ka Man et al. (2018) INO80 Chromatin Remodeling Coordinates Metabolic Homeostasis with Cell Division. Cell Rep 22:611-623
Kovary, Kyle M; Taylor, Brooks; Zhao, Michael L et al. (2018) Expression variation and covariation impair analog and enable binary signaling control. Mol Syst Biol 14:e7997
Cho, Seung Woo; Xu, Jin; Sun, Ruping et al. (2018) Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element. Cell 173:1398-1412.e22
Beckwith, Sean L; Schwartz, Erin K; GarcĂ­a-Nieto, Pablo E et al. (2018) The INO80 chromatin remodeler sustains metabolic stability by promoting TOR signaling and regulating histone acetylation. PLoS Genet 14:e1007216

Showing the most recent 10 out of 327 publications