This application seeks renewal of support for the Vascular Biology Training Program now housed within the Center for Vascular and Inflammatory Diseases (OVID) at the University of Maryland School of Medicine in Baltimore, MD. The goals of this training program are to provide multidisciplinary training for 4 pre and 4 post doctoral scientists at the forefront of research related to the molecular and physiological basis of vascular disease and to develop a clear understanding of molecular, cellular, and physiological mechanisms that maintain health of the vasculature. The program has specific features and dedicated components to address two emerging critical needs in current cardiovascular research: 1) to provide first-rate basic science laboratory training for clinical M.D.'s (residents) to form the basis for their careers as future clinician- investigators studying the cellular and molecular basis of cardiovascular diseases relevant to their clinical disciplines, and 2) to expose pre- and post-doctoral Ph.D. trainees In basic research to clinical cardiovascular pathophysiology to provide a disease-related framework for their training. To accomplish these goals we will 1) take advantage of the multidisciplinary and highly interactive environment within the OVID and at the University of Maryland Baltimore campus to provide multidisciplinary in thrombosis, vascular biology, stem cell biology, immunology and inflammation, 2) provide comprehensive and state-of-the-art scientific training experience for clinical trainees by establishing links with the outstanding clinical faculty at the University of Maryland and with the appropriate residency training programs 3) Provide appropriate clinical experience to our pre- and post-doctoral trainees in basic research by designing both didactic and hands on components guided by both PhD and MD faculty 4) Aid all of our trainees in their path to independence with regard to obtaining extramural funding and making the critical transition from trainee to mentored independent investigators. The training program has an excellent training record of producing productive and funded scientists at academic institutions and active researchers and leaders within the Biotechnology Industry. 4 pre and 4 postdoctoral trainees can choose from 21 mentors in seven departments. The training program offers unique didactic component that provides trainees with state-of-the art knowledge in Vascular and Stem Cell Biology and Clinical Cardiovascular Disease, vigorous and unique seminar programs, and skills courses that ensure their success in a competitive science environment.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
5T32HL007698-19
Application #
8133019
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Mondoro, Traci
Project Start
1991-07-01
Project End
2014-08-31
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
19
Fiscal Year
2011
Total Cost
$387,340
Indirect Cost
Name
University of Maryland Baltimore
Department
Surgery
Type
Schools of Medicine
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Wehman, Brody; Mazzeffi, Michael; Chow, Robert et al. (2018) Thoracoscopic Sympathectomy for Refractory Electrical Storm After Coronary Artery Bypass Grafting. Ann Thorac Surg 105:e99-e101
French, Beth M; Sendil, Selin; Sepuru, Krishna Mohan et al. (2018) Interleukin-8 mediates neutrophil-endothelial interactions in pig-to-human xenogeneic models. Xenotransplantation 25:e12385
Fondrie, William E; Liang, Tao; Oyler, Benjamin L et al. (2018) Pathogen Identification Direct From Polymicrobial Specimens Using Membrane Glycolipids. Sci Rep 8:15857
O'Neill, Natalie A; Zhang, Tianshu; Braileanu, Gheorghe et al. (2018) Pilot Study of Delayed ICOS/ICOS-L Blockade With ?CD40 to Modulate Pathogenic Alloimmunity in a Primate Cardiac Allograft Model. Transplant Direct 4:e344
Liu, Yewei; Russell, Sarah J; Schneider, Martin F (2018) Foxo1 nucleo-cytoplasmic distribution and unidirectional nuclear influx are the same in nuclei in a single skeletal muscle fiber but vary between fibers. Am J Physiol Cell Physiol 314:C334-C348
Landers-Ramos, Rian Q; Prior, Steven J (2018) The Microvasculature and Skeletal Muscle Health in Aging. Exerc Sport Sci Rev 46:172-179
Landers-Ramos, Rian Q; Sapp, Ryan M; VandeWater, Emily et al. (2017) Investigating the extremes of the continuum of paracrine functions in CD34-/CD31+ CACs across diverse populations. Am J Physiol Heart Circ Physiol 312:H162-H172
Leung, Lisa M; Fondrie, William E; Doi, Yohei et al. (2017) Identification of the ESKAPE pathogens by mass spectrometric analysis of microbial membrane glycolipids. Sci Rep 7:6403
Li, Lushen; Baxter, Shaneen S; Gu, Ning et al. (2017) Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci 130:1475-1485
Matyas, Jessica J; O'Driscoll, Cliona M; Yu, Laina et al. (2017) Truncated TrkB.T1-Mediated Astrocyte Dysfunction Contributes to Impaired Motor Function and Neuropathic Pain after Spinal Cord Injury. J Neurosci 37:3956-3971

Showing the most recent 10 out of 74 publications