The Department of Bioengineering, University of Pittsburgh (UPitt) is seeking continued support for a predoctoral training program (8 positions/year) aimed at educating talented students from engineering and other quantitative sciences for careers in biomedical research in the cardiovascular area. UPitt has been at the forefront of education and research in this field, with two key components contributing to this status. First, a mechanism is in place whereby our students are exposed first-hand to actual clinical problems requiring bioengineering input for their solution within various medical disciplines (e.g., cardiology, cardio- thoracic surgery, vascular surgery, radiology). Second, there has been, and continues to be, a significant Institutional commitment to these research and educational endeavors. The proposed program is interdisciplinary in nature. Although the Department of Bioengineering forms the core, the training faculty is drawn from a number of departments: Biomedical Informatics, Chemical Engineering, Medicine (Cardiology, Pulmonary Medicine), Critical Care Medicine, Pharmacology, Surgery, and Orthopaedic Surgery. The participating faculty members are (bio)engineers, physiologists/biophysicists, cell & molecular biologists, biomedical informatics specialists, cardiologists, and pulmonologists, with vigorous and well-funded research programs. There are three focus areas of this program: (1) Basic understanding and quantitative characterization of native (normal and pathological conditions) and perturbed (i.e., with deployment of man- made devices or constructs) cardiovascular function at various levels of organization (cell, tissue, whole organ), (2) Imaging for functional assessment at various levels of organization (cell, tissue, whole organ), and (3) Design and optimization of artificial devices and constructs (mechanical, tissue-engineered, and hybrid). The current proposal includes an explicit emphasis on biomedical innovation and entrepreneurship, which is consistent with the significant translational research performed by the Program faculty and trainees. Although most Program trainees have (bio)engineering background, some come from other disciplines (e.g., biology, physics, chemistry, mathematics). Program coursework (10 didactic courses and several workshops) is designed to provide both breadth and depth in engineering and biological sciences and also includes a formal exposure to biostatistics, bioethics, and professional and career development issues. A novel aspect of the program is that students are required to formally participate in a clinical experience (Clinical Internship and Rotation). Thus, the training program provides a unique educational and research experience with respect to basic and applied cardiovascular engineering and sciences. Finally, each student receives extensive research training in the laboratories of the training faculty. Twenty six predoctoral trainees have participated in the program during the current (second) cycle and we believe that the trainee performance and program outcomes have been outstanding (see Progress Report).
Cardiovascular diseases are leading causes of death and disability in the Western world. Historical observations suggest that revolutionary scientific and therapeutic advances often emerge at the interface between disciplines. Therefore, we believe that individuals trained in both engineering principles and cardiovascular science (biology) are critically needed to develop novel therapeutic approaches for treating cardiovascular diseases. The proposed program aims to provide such training to students pursuing a doctoral degree in bioengineering.
Showing the most recent 10 out of 102 publications