We propose to consolidate predoctoral training slots from two existing neuroscience training grants at Brandeis University, under the terms of the Jointly Sponsored NIH Predoctoral Training Program in the Neurosciences. Our Predoctoral Training Program in the Neurosciences is organized under the umbrella of the university's Volen Center for Complex Systems. We propose to train nine predoctoral students per year in the fields of molecular cellular, systems, cognitive, and computational neuroscience. The training faculty includes twenty-three members of the Biology, Biochemistry, Psychology, Chemistry, Physics, and Computer Science Departments at Brandeis, all of whom are also members of the Volen Center for Complex Systems. Research interests of the training faculty range from molecular studies of membrane ion channels, through cognitive studies of human behavior. Trainees are chosen from our large pool of neuroscience graduate students. They will satisfy all the laboratory rotation, course and qualifying exam requirements of the neuroscience Ph.D. program, will carry out Ph.D. thesis research in the laboratory of one of the training faculty, and will participate in other training activities including our Neurobiology Journal Club, Volen Center Colloquium Series, Volen Center Annual Retreat, and regular meetings of several laboratories with common interests. Our broadly based training program and unique environment provide an unparalleled opportunity to train the neuroscientists of the 21st century.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Institutional National Research Service Award (T32)
Project #
5T32MH019929-07
Application #
6185738
Study Section
NST-2 Subcommittee (NST)
Program Officer
Chavez, Mark
Project Start
1999-07-01
Project End
2004-06-30
Budget Start
2000-07-01
Budget End
2001-06-30
Support Year
7
Fiscal Year
2000
Total Cost
$309,356
Indirect Cost
Name
Brandeis University
Department
Type
Organized Research Units
DUNS #
616845814
City
Waltham
State
MA
Country
United States
Zip Code
02454
Popovi?, Marjena; Stacy, Andrea K; Kang, Mihwa et al. (2018) Development of Cross-Orientation Suppression and Size Tuning and the Role of Experience. J Neurosci 38:2656-2670
Amichetti, Nicole M; Atagi, Eriko; Kong, Ying-Yee et al. (2018) Linguistic Context Versus Semantic Competition in Word Recognition by Younger and Older Adults With Cochlear Implants. Ear Hear 39:101-109
Kuras, Yuliya I; McInnis, Christine M; Thoma, Myriam V et al. (2017) Increased alpha-amylase response to an acute psychosocial stress challenge in healthy adults with childhood adversity. Dev Psychobiol 59:91-98
Kuklin, Elena A; Alkins, Stephen; Bakthavachalu, Baskar et al. (2017) The Long 3'UTR mRNA of CaMKII Is Essential for Translation-Dependent Plasticity of Spontaneous Release in Drosophila melanogaster. J Neurosci 37:10554-10566
Richard, Edwin A; Khlestova, Elizaveta; Nanu, Roshan et al. (2017) Potential synergistic action of 19 schizophrenia risk genes in the thalamus. Schizophr Res 180:64-69
Knecht, Zachary A; Silbering, Ana F; Cruz, Joyner et al. (2017) Ionotropic Receptor-dependent moist and dry cells control hygrosensation in Drosophila. Elife 6:
Ritter, Neil J; Anderson, Nora M; Van Hooser, Stephen D (2017) Visual Stimulus Speed Does Not Influence the Rapid Emergence of Direction Selectivity in Ferret Visual Cortex. J Neurosci 37:1557-1567
Otopalik, Adriane G; Lane, Brian; Schulz, David J et al. (2017) Innexin expression in electrically coupled motor circuits. Neurosci Lett :
O'Toole, Sean M; Ferrer, Monica M; Mekonnen, Jennifer et al. (2017) Dicer maintains the identity and function of proprioceptive sensory neurons. J Neurophysiol 117:1057-1069
Tang, Wenbo; Shin, Justin D; Frank, Loren M et al. (2017) Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States. J Neurosci 37:11789-11805

Showing the most recent 10 out of 52 publications