The understanding of how our genetic heritage intersects with the environment to impact brain development, function, plasticity and disease, remains arguably the most complex challenge in all of biology, demanding a comparable complexity in the advanced training of neuroscientists. It is simply not possible for basic neuroscientists to gather all of the tools necessary for a productive career through completion of even the best graduate training program. The doctoral graduate may have only minimal exposure to research projects that target mental illness mechanisms, may have never probed the challenges of modeling a brain disease in an animal model, or may be specialists at a single level of analysis, training that we predict will increasingly fail to support a successful research career. Conversely, clinical trainees regularly learn of the genetic contributions to brain function and disease but often cannot readily engage the process, denying in turn their basic-science peers the opportunity to understand the challenges and benefits inherent in disease-guided research. The Vanderbilt Postdoctoral Training Program in Neurogenomics supports the advanced training of both basic and clinical neuroscientists, providing a coordinated program of mentored research, technical forums, invited lectures and career development workshops throughout the Vanderbilt tenure of the trainee. Building on a significant commitment to neuroscience research and training infrastructure at Vanderbilt University through the Center for Molecular Neuroscience (CMN), we organized our first Neurogenomic training program in 2002 and here submit the program's first renewal application. Our past program offered a somewhat broad base of molecular neuroscience training and successfully recruited and mentored outstanding basic and clinical trainees, including significant attention to trainee diversity and professional development as well as to capture of the full breadth of our mentor base. With our renewal Application, we sustain the general structure of our initial program. However, we make a concerted effort to sharpen our program to provide research and training opportunities that best illustrate and apply the tools of gene-informed neuroscience, spanning invertebrate and vertebrate model systems as well as direct analysis of the human genome, activities that immerse trainees in leading edge neurogenomic models, approaches and technologies. Our program is directed by Randy D. Blakely, Ph.D., Director of the CMN, and an NIMH MERIT awardee, whose research capture opportunities in both nematode and transgenic mouse models to understand the regulation and genetics of biogenic amine signaling, and who has an outstanding track record in both pre- and postdoctoral training. The program is co-directed by James S. Sutcliffe, Ph.D., a talented neurogeneticist, who brings to the program expertise in the study of genes contributing risk to neurobehavioral disorders, including Angelman's syndrome and Autism.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZMH1-ERB-Z (02))
Program Officer
Desmond, Nancy L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Stewart, Adele; Davis, Gwynne L; Gresch, Paul J et al. (2018) Serotonin transporter inhibition and 5-HT2C receptor activation drive loss of cocaine-induced locomotor activation in DAT Val559 mice. Neuropsychopharmacology :
Morgan, Amanda J; Kingsley, Philip J; Mitchener, Michelle M et al. (2018) Detection of Cyclooxygenase-2-Derived Oxygenation Products of the Endogenous Cannabinoid 2-Arachidonoylglycerol in Mouse Brain. ACS Chem Neurosci 9:1552-1559
Fisher, Nicole M; Gogliotti, Rocco G; Vermudez, Sheryl Anne D et al. (2018) Genetic Reduction or Negative Modulation of mGlu7 Does Not Impact Anxiety and Fear Learning Phenotypes in a Mouse Model of MECP2 Duplication Syndrome. ACS Chem Neurosci 9:2210-2217
Stansley, Branden J; Fisher, Nicole M; Gogliotti, Rocco G et al. (2018) Contextual Fear Extinction Induces Hippocampal Metaplasticity Mediated by Metabotropic Glutamate Receptor 5. Cereb Cortex 28:4291-4304
Yohn, Samantha E; Conn, P Jeffrey (2018) Positive allosteric modulation of M1 and M4 muscarinic receptors as potential therapeutic treatments for schizophrenia. Neuropharmacology 136:438-448
Vranjkovic, Oliver; Winkler, Garrett; Winder, Danny G (2018) Ketamine administration during a critical period after forced ethanol abstinence inhibits the development of time-dependent affective disturbances. Neuropsychopharmacology 43:1915-1923
Robinson, Sarah B; Hardaway, J Andrew; Hardie, Shannon L et al. (2017) Sequence determinants of the Caenhorhabditis elegans dopamine transporter dictating in vivo axonal export and synaptic localization. Mol Cell Neurosci 78:41-51
Rogers, Tiffany D; Anacker, Allison M J; Kerr, Travis M et al. (2017) Effects of a social stimulus on gene expression in a mouse model of fragile X syndrome. Mol Autism 8:30
Abe, Masahito; Seto, Mabel; Gogliotti, Rocco G et al. (2017) Discovery of VU6005649, a CNS Penetrant mGlu7/8 Receptor PAM Derived from a Series of Pyrazolo[1,5-a]pyrimidines. ACS Med Chem Lett 8:1110-1115
Gogliotti, Rocco G; Senter, Rebecca K; Fisher, Nicole M et al. (2017) mGlu7 potentiation rescues cognitive, social, and respiratory phenotypes in a mouse model of Rett syndrome. Sci Transl Med 9:

Showing the most recent 10 out of 162 publications