?s Abstract): This is an application for a new Institutional Training Grant in Neural Injury and Plasticity. We request support for 2 advanced pre-doctoral (thesis research) students and two post-doctoral fellows who will be trained in research in neural injury and plasticity by faculty participating in the Center for Neural Injury and Recovery (CNIR) at Georgetown University. The purpose of this training program is to prepare scientists and physicians to investigate fundamental mechanisms of neural injury, and basic mechanisms of plasticity in response to injury that may be functionally beneficial or detrimental. Our goal is to train researchers who will be capable of, and committed to, the development of novel and effective treatment strategies to reduce the functional impairments associated with neural injury. An experienced and wellfunded group of 20 faculty with a wide range of research interests and expertise relevant to neural injury and plasticity will participate in training. A key aspect of the program is that students will have comentors and their research will represent collaboration between the laboratories of the training faculty. Pre-doctoral students will enter the Program in Neural Injury and Plasticity after basic training in neuroscience under the auspices of the Georgetown University Interdisciplinary Program in Neuroscience or appropriate departmental Ph.D. programs. Students will have the opportunity for research rotations in the laboratories of the training faculty in their first two years of training while they are completing required and elective courses. They will develop a thesis research proposal in Neural Injury and Plasticity under the direction of mentors chosen from the training program. Both pre-doctoral and post-doctoral trainees will participate in educational programs of the CNIR including Research Minisymposia and specific Journal Clubs focused on current research in areas relevant to neural injury and plasticity.
Main, Bevan S; Villapol, Sonia; Sloley, Stephanie S et al. (2018) Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury. Mol Neurodegener 13:17 |
Sun, Zhi Yong; Bozzelli, P Lorenzo; Caccavano, Adam et al. (2018) Disruption of perineuronal nets increases the frequency of sharp wave ripple events. Hippocampus 28:42-52 |
Turesky, Ted K; Olulade, Olumide A; Luetje, Megan M et al. (2018) An fMRI study of finger tapping in children and adults. Hum Brain Mapp 39:3203-3215 |
Aguilar, Brittany L; Forcelli, Patrick A; Malkova, Ludise (2018) Inhibition of the substantia nigra pars reticulata produces divergent effects on sensorimotor gating in rats and monkeys. Sci Rep 8:9369 |
Winland, Carissa D; Welsh, Nora; Sepulveda-Rodriguez, Alberto et al. (2017) Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons. Eur J Neurosci 46:2519-2533 |
Heyburn, Lanier; Moussa, Charbel E-H (2017) TDP-43 in the spectrum of MND-FTLD pathologies. Mol Cell Neurosci 83:46-54 |
Neustadtl, Aidan L; Winston, Charisse N; Parsadanian, Maia et al. (2017) Reduced cortical excitatory synapse number in APOE4 mice is associated with increased calcineurin activity. Neuroreport 28:618-624 |
Bachis, Alessia; Campbell, Lee A; Jenkins, Kierra et al. (2017) Morphine Withdrawal Increases Brain-Derived Neurotrophic Factor Precursor. Neurotox Res 32:509-517 |
Main, Bevan S; Sloley, Stephanie S; Villapol, Sonia et al. (2017) A Mouse Model of Single and Repetitive Mild Traumatic Brain Injury. J Vis Exp : |
Wenzel, Erin D; Bachis, Alessia; Avdoshina, Valeria et al. (2017) Endocytic Trafficking of HIV gp120 is Mediated by Dynamin and Plays a Role in gp120 Neurotoxicity. J Neuroimmune Pharmacol 12:492-503 |
Showing the most recent 10 out of 56 publications