The continuing aim of the Brain Injury Training Grant (BITG) is to provide an excellent mentoring environment for highly motivated clinician and basic scientists to prepare them for careers in nervous system injury research. Our trainees acquire basic science research skills that address the etiology, pathogenesis, diagnosis, treatment, and prevention of injury to the nervous system, such as traumatic brain injury (TBI), cerebral ischemia (stroke), and brain repair. Since its inception in 2003, the training program has flourished. For former BITG trainees who have finished all career training, 19 have obtained faculty positions (9 neurosurgeon academic clinicians and 10 Ph.D. academic scientists). In addition 3 trainees joined US government biomedical research administration (respectively, NIH, DARPA and DVBIC), 1 trainee is a scientific journal editor, and 3 trainees have gone on to positions in the biomedical research industry. For this competing renewal of the BITG, we request continued funding for 4 postdoctoral fellowship slots (simultaneous) for individuals with a strong interest in studying injury to the nervous system. These positions are anticipated to be filled by a combination of neurosurgical residents (during their strictly protected research training) and highly qualified Ph.D. graduates. The BITG program administration will continue to be democratically governed by group vote of faculty mentors. Day-to-day management will be entrusted to an Executive Committee. For training, the research project will typically be based in an individual laboratory. Trainees will actively participate in selecting the mentor and laboratory. To become integrated with the greater BITG community and research program, trainees will engage in multiple activities, such as mandatory and optional course work, seminars and scientific retreats. Unique to this program, trainees will also participate in patient outreach events and they will perform community service. In addition, over the current funded cycle, we have established a plan to continue and enhance our successful efforts on diversity recruitment. This includes a designated Diversity Recruitment Liaison as a member of our Executive Committee and employing strategies to increase awareness and engagement with diversity opportunities. Considering the growing understanding of the impact of nervous system injury on society, the well-established BITG program plays an important role in training well-rounded future research leaders in this area.

Public Health Relevance

The continuing aim of the Brain Injury Training Grant (BITG) is to provide an excellent mentoring environment for highly motivated clinician and basic scientists to prepare them for careers in nervous system injury research. We request continued funding for 4 post-doctoral training slots (simultaneous) for individuals with a strong interest in studying injury to the nervous system who will train within a broader program. These positions are anticipated to be filled by a combination of neurosurgical residents (during their strictly protected research training) and highly qualified Ph.D. graduates.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Institutional National Research Service Award (T32)
Project #
5T32NS043126-18
Application #
9961691
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
Korn, Stephen J
Project Start
2003-07-01
Project End
2023-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
18
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Neurosurgery
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Jackson, Dan P; Ting, Jenhao H; Pozniak, Paul D et al. (2018) Identification and characterization of two novel alternatively spliced E2F1 transcripts in the rat CNS. Mol Cell Neurosci 92:1-11
Wolf, John A; Johnson, Brian N; Johnson, Victoria E et al. (2017) Concussion Induces Hippocampal Circuitry Disruption in Swine. J Neurotrauma 34:2303-2314
Katiyar, Kritika S; Winter, Carla C; Struzyna, Laura A et al. (2017) Mechanical elongation of astrocyte processes to create living scaffolds for nervous system regeneration. J Tissue Eng Regen Med 11:2737-2751
Wofford, Kathryn L; Harris, James P; Browne, Kevin D et al. (2017) Rapid neuroinflammatory response localized to injured neurons after diffuse traumatic brain injury in swine. Exp Neurol 290:85-94
Coats, Brittany; Binenbaum, Gil; Smith, Colin et al. (2017) Cyclic Head Rotations Produce Modest Brain Injury in Infant Piglets. J Neurotrauma 34:235-247
Merkow, Maxwell B; Burke, John F; Ramayya, Ashwin G et al. (2017) Stimulation of the human medial temporal lobe between learning and recall selectively enhances forgetting. Brain Stimul 10:645-650
Struzyna, Laura A; Adewole, Dayo O; Gordián-Vélez, Wisberty J et al. (2017) Anatomically Inspired Three-dimensional Micro-tissue Engineered Neural Networks for Nervous System Reconstruction, Modulation, and Modeling. J Vis Exp :
Cullen, D Kacy; Harris, James P; Browne, Kevin D et al. (2016) A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration. Methods Mol Biol 1462:289-324
Harris, J P; Struzyna, L A; Murphy, P L et al. (2016) Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain. J Neural Eng 13:016019
Yu, Ki Jun; Kuzum, Duygu; Hwang, Suk-Won et al. (2016) Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat Mater 15:782-791

Showing the most recent 10 out of 49 publications