Ongoing support is requested for a """"""""Graduate Program in Comparative Medicine"""""""" in the College of Veterinary Medicine at Cornell University. Six positions are requested - the same number previously awarded through this NCRR sponsored training instrument. The Comparative Medicine Program combines the very best that Cornell offers in the form of didactic graduate-level instruction, faculty supervision and training related activities. Provision would be made for trainees to follow one of two tracks, one geared to basic research and one to a career in translational science. In each case, training would be structured to ensure the orderly progression of scholars to independence. The program for five graduate scholars would combine independent, faculty-guided research with formal instruction. In cell and molecular biology and biostatistics, career counseling, and a variety of professional enrichment activities calculated to develop the trainees'critical capacity, communication and teamwork skills. Graduate scholars would earn the PhD degree. A single postdoctoral scholar would be appointed for one year only, pending his or her enrollment in the Cornell Graduate School. In each case, scholar training would total approximately five years;however, funding is requested for three years only. Training beyond three years would be provided by an individual NRSA or a """"""""K"""""""" award, grants to the trainee's faculty mentor, unrestricted college funds, or a combination of those resources. Program alumni would be encouraged to undertake at least two years of research beyond the PhD degree, preferably in a related discipline and at a different institution, before accepting their initial appointment as an independent investigator. Many alumni are expected to realize careers as faculty members in U.S. veterinary colleges or medical schools, although some may seek research positions in independent institutions, government, or industry.

Public Health Relevance

(provided by applicant): The Comparative Medicine Program at Cornell University is preparing accomplished and highly motivated veterinary graduates for discovery-based careers. Veterinarians have much to contribute in this regard by virtue of their capacity for lateral thinking and ability to analyze diseases in a comparative context. The program is utilizing knowledge and technology drawn from enabling disciplines to better understand life processes at a molecular level, and to develop new approaches to the treatment and prevention of both animal and human diseases. To this end, trainees pursue independent research under the guidance of successful scientists in the unsurpassed technical and intellectual environment of an academic institution that places a premium on cutting-edge, interdisciplinary research.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Program Officer
Watson, William T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cornell University
Schools of Veterinary Medicine
United States
Zip Code
Bonnevie, Edward D; Delco, Michelle L; Fortier, Lisa A et al. (2015) Characterization of Tissue Response to Impact Loads Delivered Using a Hand-Held Instrument for Studying Articular Cartilage Injury. Cartilage 6:226-32
Schneider, Anne G; Abi Abdallah, Delbert S; Butcher, Barbara A et al. (2013) Toxoplasma gondii triggers phosphorylation and nuclear translocation of dendritic cell STAT1 while simultaneously blocking IFNýý-induced STAT1 transcriptional activity. PLoS One 8:e60215
Brosnahan, M M; Erb, H N; Perkins, G A et al. (2012) Serum iron parameters and acute experimental EHV-1 infection in horses. J Vet Intern Med 26:1232-5
Cavatorta, Derek J; Erb, Hollis N; Felippe, M Julia (2012) Activation-induced FoxP3 expression regulates cytokine production in conventional T cells stimulated with autologous dendritic cells. Clin Vaccine Immunol 19:1583-92
Brosnahan, Margaret M; Miller, Donald C; Adams, Mackenzie et al. (2012) IL-22 is expressed by the invasive trophoblast of the equine (Equus caballus) chorionic girdle. J Immunol 188:4181-7
Hackett, Catherine H; Flaminio, Maria Julia B F; Fortier, Lisa A (2011) Analysis of CD14 expression levels in putative mesenchymal progenitor cells isolated from equine bone marrow. Stem Cells Dev 20:721-35
Brosnahan, M M; Brooks, S A; Antczak, D F (2010) Equine clinical genomics: A clinician's primer. Equine Vet J 42:658-70
Radcliffe, Catherine H; Flaminio, M Julia B F; Fortier, Lisa A (2010) Temporal analysis of equine bone marrow aspirate during establishment of putative mesenchymal progenitor cell populations. Stem Cells Dev 19:269-82
Rishniw, M; Fisher, P J; Doran, R M et al. (2009) Striated myogenesis and peristalsis in the fetal murine esophagus occur without cell migration or interstitial cells of Cajal. Cells Tissues Organs 189:410-9
DeRegis, Carol J; Rahl, Peter B; Hoffman, Gregory R et al. (2008) Mutational analysis of betaCOP (Sec26p) identifies an appendage domain critical for function. BMC Cell Biol 9:3

Showing the most recent 10 out of 20 publications