Alzheimer?s disease (AD) is the most common cause of dementia and one of the leading causes of death in the United States. AD is the only leading cause of death for which no disease-modifying therapy is currently available. Neuroinflammation plays a major role in AD pathogenesis. Epoxyeicosanoid signaling is a key integrator of cell-cell communication in the central nervous system (CNS), coordinating cellular responses across different cell types. Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites of cytochrome P450 epoxygenase that have potent anti-inflammatory activity. In our preliminary study, we demonstrated that pharmacological inhibition of sEH can attenuate neuroinflammation, enhance reduction of plaque pathology, and eventually reverse spatial learning and memory deficits in preclinical models of AD. Although some sEH inhibitors (sEHIs) have been reported, none of them are optimized for CNS applications. Blood brain barrier (BBB) is the main hurdle for CNS drug development. Taking advantage of high throughput virtual screening and medicinal chemistry optimization, we developed EHI-16 as a highly potent, orally available and brain permeable sEHI. Additionally, EHI-16 reduces LPS-induced neuroinflammation in both primary astrocytes and in vivo. In this project, we will further optimize EHI-16 to develop anti-inflammation therapy for AD treatment. To this end, we assembled a highly motivated and experienced team with complementary expertise. Dr. Wang is an expert on small molecule drug discovery and ADMET profiling. Dr. Zheng is a pioneer on AD pathophysiology and mouse modeling. Our expertise, highly promising preliminary data, and proven collaboration track-record will ensure the success of the proposed project.
In Aim 1, we will develop potent, orally available, and CNS-penetrable sEHIs.
In Aim 2, we will determine the pharmacokinetics-pharmacodynamics relationship of sEHIs and in vivo efficacy in attenuating neuroinflammation and improving cognitive impairment in AD mouse models.
In Aim 3, we will determine the toxicity and PK profile of sEHIs in rats and dogs and perform IND-enabling studies. The successful accomplishment of this project will open a new avenue for treating and preventing AD and will advance our scientific knowledge of multiple mechanisms of AD.
Alzheimer?s disease (AD) is an irreversible, progressive brain disorder that currently has no cure. We will develop a novel anti-inflammation therapy to treat AD. We expect that successful completion of this project will make a significant impact on the treatments of AD.