The purpose of this component of the Program Project is to use existing and newly developed innovative animal models to investigate the basis of the pathogenesis of Mycobacterium avium infections in the normal and immunodeficient animal. The project will involve experiments designed to monitor the natural course of the infection in such animals, with emphasis on gastrointestinal involvement in order to most closely mimic the apparent course of events in HIV-positive patients. In addition, it will investigate the basis of the host-parasite interaction, including the role of serotype and colony morphotype, in the ability of the organism to persist and/or give rise to infection, and also in terms of the capacity of bacterial cell wall-associated structures to interfere with immune processes. The proposed project is also intimately connected with the other component projects. It will allow a comparison between the biochemical properties of M. avium isolates, their behavior in vivo (Project A); it will provide the means whereby transformed mutants of M. avium can be evaluated in terms of their virulence and infectivity in vivo (Project B); and it will provide the facilities whereby existing and new innovative animal models can be used to evaluate potential new agents in vivo, following their initial identification by in vitro screening and computer predictive modelling (Project D).

Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
1991
Total Cost
Indirect Cost
Name
Colorado State University-Fort Collins
Department
Type
DUNS #
112617480
City
Fort Collins
State
CO
Country
United States
Zip Code
80523
Xin, Y; Lee, R E; Scherman, M S et al. (1997) Characterization of the in vitro synthesized arabinan of mycobacterial cell walls. Biochim Biophys Acta 1335:231-4
Lee, R E; Armour, J W; Takayama, K et al. (1997) Mycolic acid biosynthesis: definition and targeting of the Claisen condensation step. Biochim Biophys Acta 1346:275-84
Venkataprasad, N; Jacobs, M R; Johnson, J L et al. (1997) Activity of new quinolones against intracellular Mycobacterium avium in human monocytes. J Antimicrob Chemother 40:841-5
Belanger, A E; Besra, G S; Ford, M E et al. (1996) The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A 93:11919-24
Klopman, G; Fercu, D; Renau, T E et al. (1996) N-1-tert-butyl-substituted quinolones: in vitro anti-Mycobacterium avium activities and structure-activity relationship studies. Antimicrob Agents Chemother 40:2637-43
Klopman, G; Fercu, D; Li, J Y et al. (1996) Antimycobacterial quinolones: a comparative analysis of structure-activity and structure-cytotoxicity relationships. Res Microbiol 147:86-96
Shiratsuchi, H; Jacobs, M R; Pearson, A J et al. (1996) Comparison of the activity of fluoroquinolones against Mycobacterium avium in cell-free systems and a human monocyte in-vitro infection model. J Antimicrob Chemother 37:491-500
Mikusova, K; Mikus, M; Besra, G S et al. (1996) Biosynthesis of the linkage region of the mycobacterial cell wall. J Biol Chem 271:7820-8
Dubnau, E; Soares, S; Huang, T J et al. (1996) Overproduction of mycobacterial ribosomal protein S13 induces catalase/peroxidase activity and hypersensitivity to isoniazid in Mycobacterium smegmatis. Gene 170:17-22
Furney, S K; Skinner, P S; Farrer, J et al. (1995) Activities of rifabutin, clarithromycin, and ethambutol against two virulent strains of Mycobacterium avium in a mouse model. Antimicrob Agents Chemother 39:786-9

Showing the most recent 10 out of 40 publications