The long-term vision of this program is to improve patient care by optimizing, validating, and extending quantitative MRI methods for the early prediction of breast cancer response to neoadjuvant therapy (NAT). During the first period of support, we developed several experimental and computational tools for improving quantitative dynamic contrast enhanced MRI (DCE-MRI) and diffusion weighted MRI (DW-MRI) of the breast. These tools were successfully applied in clinical trials and the resulting data were incorporated into a statistical model to predict, after only one cycle of treatment, the eventual pathological complete response (pCR) of breast tumors to NAT. We now have the opportunity to deploy these techniques in two multi-site clinical trials, focused on triple negative breast cancer (TNBC), to be opened simultaneously at Vanderbilt University and the University of Chicago. These trials offer the opportunity to validate and then extend our imaging techniques in both simple and complex trial environments. Thus, we have identified the following Specific Aims:
Aim 1. Optimize quantitative DCE- and DW-MRI for two multi-site breast cancer clinical trials Aim 2. Validate quantitative MRI for predicting breast cancer treatment response early during NAT Aim 3. Extend quantitative MRI by predicting breast cancer treatment response during a complex NAT trial Our overarching hypothesis (guided by the results from the first period of support) is that the synthesis of quantitative DCE- and DW-MRI measured after the first cycle of NAT will achieve an area under the receiver operating characteristic curve of at least 0.87 for predicting the eventual response of TNBC patients to NAT. If this hypothesis is validated, we will be able to provide significant direction on developing personalized treatment strategies for this important patient population. Furthermore, we will be well-positioned to proceed to larger multi-site trials-a necessary step towards adoption into routine clinical algorithms.

Public Health Relevance

The overall goal of this program is to significantly improve patient care by optimizing, validating, and then extending quantitative MRI methods for the early prediction of breast cancer response to neoadjuvant therapy. The knowledge acquired through this study will provide direction on developing personalized treatment strategies for breast cancer patients undergoing neoadjuvant therapy and may motivate a shift in existing paradigms of therapy monitoring and selection in breast cancer. Furthermore, MRI assessment of early response could be broadly applicable to other solid tumors where neoadjuvant therapy is appropriate.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project--Cooperative Agreements (U01)
Project #
7U01CA142565-11
Application #
9988695
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Tata, Darayash B
Project Start
2010-05-01
Project End
2020-08-31
Budget Start
2019-09-01
Budget End
2020-08-31
Support Year
11
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Texas Austin
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
170230239
City
Austin
State
TX
Country
United States
Zip Code
78759
Wu, Chengyue; Pineda, Federico; Hormuth 2nd, David A et al. (2018) Quantitative analysis of vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast tumors. Magn Reson Med :
McKenna, Matthew T; Weis, Jared A; Brock, Amy et al. (2018) Precision Medicine with Imprecise Therapy: Computational Modeling for Chemotherapy in Breast Cancer. Transl Oncol 11:732-742
Hormuth 2nd, David A; Weis, Jared A; Barnes, Stephanie L et al. (2018) Biophysical Modeling of In Vivo Glioma Response After Whole-Brain Radiation Therapy in a Murine Model of Brain Cancer. Int J Radiat Oncol Biol Phys 100:1270-1279
Pineda, Federico D; Easley, Ty O; Karczmar, Gregory S (2018) Dynamic field-of-view imaging to increase temporal resolution in the early phase of contrast media uptake in breast DCE-MRI: A feasibility study. Med Phys 45:1050-1058
Joint Head and Neck Radiotherapy-MRI Development Cooperative (2018) Dynamic contrast-enhanced magnetic resonance imaging for head and neck cancers. Sci Data 5:180008
Sorace, Anna G; Partridge, Savannah C; Li, Xia et al. (2018) Distinguishing benign and malignant breast tumors: preliminary comparison of kinetic modeling approaches using multi-institutional dynamic contrast-enhanced MRI data from the International Breast MR Consortium 6883 trial. J Med Imaging (Bellingham) 5:011019
Kang, Hakmook; Hainline, Allison; Arlinghaus, Lori R et al. (2018) Combining multiparametric MRI with receptor information to optimize prediction of pathologic response to neoadjuvant therapy in breast cancer: preliminary results. J Med Imaging (Bellingham) 5:011015
Jarrett, Angela M; Hormuth, David A; Barnes, Stephanie L et al. (2018) Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results. Phys Med Biol 63:105015
Cardin, Dana B; Goff, Laura W; Chan, Emily et al. (2018) Dual Src and EGFR inhibition in combination with gemcitabine in advanced pancreatic cancer: phase I results : A phase I clinical trial. Invest New Drugs 36:442-450
Jarrett, Angela M; Lima, Ernesto A B F; Hormuth 2nd, David A et al. (2018) Mathematical models of tumor cell proliferation: A review of the literature. Expert Rev Anticancer Ther 18:1271-1286

Showing the most recent 10 out of 82 publications