This submission from the Childrens Hospital of UPMC and the University of Pittsburgh responds to the TriaNet RFA DK-13-010. This group of investigators, with extensive experience who are a current TrialNet center, has the resources, and ability to add to our current large number of affiliates and a track record demonstrating our ability to continue TrialNet participation as a center. In order to answer the objective of the RFA we have described in detail our record of recruitment into clinical trials of new onset patients an relatives at risk, with our success being based on our very large patient population and longevity of our research team. Increased support from the new Clinical Network Hub will support us in expansion of our efforts and especially our work with affiliates to increase their involvement and recruitment efforts. We are also able to include our fellow trainees in the TrialNet Investigations to train the T1D clinical trialists of the future. Our investigators and nurses have been very involved with all national TrialNet activities and committees and plan to continue or increase this involvement. In addition our center has proposed a randomized double blinded trial to evaluate the efficacy of a new FDA approved diabetes-suppressive cell vaccine, consisting of autologous monocyte- derived dendritic cells treated ex vivo with antisense phosphorothioate-modified oligonucleotides targeting the primary transcripts of the CD40, CD80 and CD86 co-stimulatory molecules (immunoregulatory)(iDC). The initial trial in patients with new onset Type 1 diabetes (T1D) has been approved in principal by the TrialNet steering committee pending funding. As in all the TrialNet interventions, the hypotheses to be tested in this study are that gene-engineered autologous iDC can attenuate or suppress the autoimmunity in: a) newly- diagnosed T1D, sparing residual beta cell mass, with restoration of insulin secretion as assessed by stimulated C- peptide levels. b) relatives with disease predicting islet autoantibodies, to sustain insulin secretion and to prevent or delay progression to clinical T1D. Currently, other than immune suppression with considerable potential side effects, there is no other means to reverse or prevent new-onset T1D. Our goal is to develop safe, easily administered interventions to suppress the autoimmune disease process. The strength of this proposal is the expertise and experience of the investigators, well established collaborations across centers and a novel intervention strategy.

Public Health Relevance

Research over the past decade has clearly demonstrated that the development of autoantibodies directed against the islet cells that make insulin are present for a few to many before the development of clinically overt type 1 diabetes mellitus. This collaborative research effort is the only very large well-oiled consortium that can test diabetes intervention strategies that might delay or prevent Type 1 Diabetes

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-J (M2))
Program Officer
Leschek, Ellen W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Ismail, Heba M; Xu, Ping; Libman, Ingrid M et al. (2018) The shape of the glucose concentration curve during an oral glucose tolerance test predicts risk for type 1 diabetes. Diabetologia 61:84-92
Culina, Slobodan; Lalanne, Ana Ines; Afonso, Georgia et al. (2018) Islet-reactive CD8+ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci Immunol 3:
Vecchio, Federica; Lo Buono, Nicola; Stabilini, Angela et al. (2018) Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes. JCI Insight 3:
Redondo, Maria J; Steck, Andrea K; Sosenko, Jay et al. (2018) Transcription Factor 7-Like 2 (TCF7L2) Gene Polymorphism and Progression From Single to Multiple Autoantibody Positivity in Individuals at Risk for Type 1 Diabetes. Diabetes Care 41:2480-2486
Sanda, Srinath; Type 1 Diabetes TrialNet Study Group (2018) Increasing ICA512 autoantibody titers predict development of abnormal oral glucose tolerance tests. Pediatr Diabetes 19:271-276
Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana et al. (2018) Autoreactive T effector memory differentiation mirrors ? cell function in type 1 diabetes. J Clin Invest 128:3460-3474
Redondo, Maria J; Geyer, Susan; Steck, Andrea K et al. (2018) A Type 1 Diabetes Genetic Risk Score Predicts Progression of Islet Autoimmunity and Development of Type 1 Diabetes in Individuals at Risk. Diabetes Care 41:1887-1894
Greenbaum, Carla J; Speake, Cate; Krischer, Jeffrey et al. (2018) Strength in Numbers: Opportunities for Enhancing the Development of Effective Treatments for Type 1 Diabetes-The TrialNet Experience. Diabetes 67:1216-1225
Haller, Michael J; Schatz, Desmond A; Skyler, Jay S et al. (2018) Low-Dose Anti-Thymocyte Globulin (ATG) Preserves ?-Cell Function and Improves HbA1c in New-Onset Type 1 Diabetes. Diabetes Care 41:1917-1925
Redondo, Maria J; Geyer, Susan; Steck, Andrea K et al. (2018) TCF7L2 Genetic Variants Contribute to Phenotypic Heterogeneity of Type 1 Diabetes. Diabetes Care 41:311-317

Showing the most recent 10 out of 80 publications