This is a new application in response to RFA-GM-04-002, for which the proposed work should help move toward the long-term goal of selection of antihypertensive drug therapy based on a patient's genetic make-up. Hypertension (HTN) is the most common chronic disease for which drugs are prescribed, and the most prevalent risk factor for heart attack, stroke, renal failure and heart failure. Responses to antihypertensive drug therapy exhibit considerable interpatient variability, contributing to poor rates of HTN control (currently 34% in the US), and frequent nonadherence and dropout from therapy. We propose to identify genetic predictors of the antihypertensive and adverse metabolic responses to two preferred and pharmacodynamically contrasting drugs, a ?-blocker (atenolol) and a thiazide diuretic (HCTZ) given initially as monotherapy, and subsequently in combination, to 800 individuals with uncomplicated hypertension. High quality phenotype data, including both home and ambulatory measures of blood pressure (BP) response, and lipid and insulin sensitivity measures of adverse metabolic responses will be related to genetic variation through two approaches. First, testing 7 SNPs in each of 70 candidate genes, we will examine the influence of these genes'variation on responses to p-blockers and diuretics (Specific Aim 1). This will include assessment of genetic associations with: antihypertensive responses to monotherapy (Aim 1a), addition of a second drug to monotherapy (Aim 1b), and combination therapy (Aim 1c);and adverse metabolic responses to mono and combination therapy (Aim Id). This candidate gene approach will be supplemented by discovery of novel genes involved in variable BP and metabolic responses to p-blockers and diuretics through testing of 20,000 pututative functional SNPs that span the human genome (Specific Aim 2). As in Aim 1, Aim 2 will include testing for associations with antihypertensive and adverse metabolic responses to monotherapy and combination therapy. The proposed research will substantially increase our understanding of the pharmacogenetics of mono- and combination antihypertensive drug therapy. It will also lead to creation of data sets and samples that can be used by others in the field, through deposit of data to PharmGKB, and creation of immortalized cell lines from all study participants to share data and biological samples with other researchers. The proposed research is significant because genetically-targeted antihypertensive therapy could lead to dramatically higher response rates and fewer adverse effects than the usual trial-and-error approach. This would likely lead to higher rates of HTN control, less need for polypharmacy, reduced health care costs, and improved outcomes. The proposed efforts will be enhanced through conduct within the Pharmacogenetics Research Network, and availability of data and biological samples will be beneficial to other investigators in the field.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01GM074492-05
Application #
7679099
Study Section
Special Emphasis Panel (ZRG1-GGG-B (50))
Project Start
2005-08-03
Project End
2010-07-31
Budget Start
2009-08-01
Budget End
2010-07-31
Support Year
5
Fiscal Year
2009
Total Cost
$2,346,440
Indirect Cost
Name
University of Florida
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
El Rouby, Nihal; McDonough, Caitrin W; Gong, Yan et al. (2018) Genome-wide association analysis of common genetic variants of resistant hypertension. Pharmacogenomics J :
Wenger, Nanette K; Arnold, Anita; Bairey Merz, C Noel et al. (2018) Hypertension Across a Woman's Life Cycle. J Am Coll Cardiol 71:1797-1813
McDonough, Caitrin W; Magvanjav, Oyunbileg; Sá, Ana C C et al. (2018) Genetic Variants Influencing Plasma Renin Activity in Hypertensive Patients From the PEAR Study (Pharmacogenomic Evaluation of Antihypertensive Responses). Circ Genom Precis Med 11:e001854
Empey, Philip E; Stevenson, James M; Tuteja, Sony et al. (2018) Multisite Investigation of Strategies for the Implementation of CYP2C19 Genotype-Guided Antiplatelet Therapy. Clin Pharmacol Ther 104:664-674
Chang, S-W; McDonough, C W; Gong, Y et al. (2018) Genome-wide association study identifies pharmacogenomic loci linked with specific antihypertensive drug treatment and new-onset diabetes. Pharmacogenomics J 18:106-112
Wang, Danxin; Hartmann, Katherine; Seweryn, Michal et al. (2018) Interactions Between Regulatory Variants in CYP7A1 (Cholesterol 7?-Hydroxylase) Promoter and Enhancer Regions Regulate CYP7A1 Expression. Circ Genom Precis Med 11:e002082
Sá, Ana Caroline C; Webb, Amy; Gong, Yan et al. (2018) Blood pressure signature genes and blood pressure response to thiazide diuretics: results from the PEAR and PEAR-2 studies. BMC Med Genomics 11:55
Weitzel, Kristin W; Smith, D Max; Elsey, Amanda R et al. (2018) Implementation of Standardized Clinical Processes for TPMT Testing in a Diverse Multidisciplinary Population: Challenges and Lessons Learned. Clin Transl Sci 11:175-181
Cavallari, Larisa H; Lee, Craig R; Beitelshees, Amber L et al. (2018) Multisite Investigation of Outcomes With Implementation of CYP2C19 Genotype-Guided Antiplatelet Therapy After Percutaneous Coronary Intervention. JACC Cardiovasc Interv 11:181-191
Smith, D Max; Weitzel, Kristin W; Cavallari, Larisa H et al. (2018) Clinical application of pharmacogenetics in pain management. Per Med 15:117-126

Showing the most recent 10 out of 178 publications