We aim to improve infectious disease surveillance and control through mathematical modeling, optimization, and translational collaborations with public health decision makers. Methodologically, we will advance the application of mathematical modeling to inform public heath policy decisions by (i) integrating large-scale optimization, economic analyses, and uncertainty quantification into mathematical models of disease transmission in complex and dynamic populations, and by (ii) developing goal-oriented optimization methods for integrating diverse data sources to improve infectious disease surveillance systems. We will apply these approaches using data on influenza, respiratory syncytial virus (RSV), pertussis, West Nile virus (WNV), and dengue from around the world to elucidate the complex drivers of outbreaks and control and to identify highly effective, economical, and feasible control policies. We will disseminate our models and results to public health authorities and develop user-friendly modeling tools to facilitate preparedness and real-time decision- making regarding the optimal distribution of limited disease control resources. Thus, our interdisciplinary research will expand the methodological toolkit for modeling infectious disease dynamics, provide better strategies for tracking and mitigating epidemics, and make science, data, and models more broadly accessible to public health agencies engaged in the global fight against infectious diseases.

Public Health Relevance

By applying optimization, economic, and uncertainty quantification methods to mathematical models of both disease dynamics and surveillance systems, we will answer fundamental questions about the spread of influenza, respiratory syncytial virus (RSV), pertussis, dengue, and West Nile virus (WNV), identify innovative strategies for improving the detection and control of these diseases, and produce translational public health decision-support tools.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project--Cooperative Agreements (U01)
Project #
2U01GM087719-06
Application #
8703900
Study Section
Special Emphasis Panel (ZGM1-BBCB-5 (MI))
Program Officer
Sheeley, Douglas
Project Start
2009-06-01
Project End
2019-04-30
Budget Start
2014-08-01
Budget End
2015-04-30
Support Year
6
Fiscal Year
2014
Total Cost
$730,889
Indirect Cost
$168,002
Name
Yale University
Department
Public Health & Prev Medicine
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Du, Zhanwei; Yang, Yongjian; Gao, Chao et al. (2018) The temporal network of mobile phone users in Changchun Municipality, Northeast China. Sci Data 5:180228
Ertem, Zeynep; Raymond, Dorrie; Meyers, Lauren Ancel (2018) Optimal multi-source forecasting of seasonal influenza. PLoS Comput Biol 14:e1006236
Perofsky, Amanda C; Lewis, Rebecca J; Meyers, Lauren Ancel (2018) Terrestriality and bacterial transfer: a comparative study of gut microbiomes in sympatric Malagasy mammals. ISME J :
Sah, Pratha; Medlock, Jan; Fitzpatrick, Meagan C et al. (2018) Optimizing the impact of low-efficacy influenza vaccines. Proc Natl Acad Sci U S A 115:5151-5156
Durham, David P; Fitzpatrick, Meagan C; Ndeffo-Mbah, Martial L et al. (2018) Evaluating Vaccination Strategies for Zika Virus in the Americas. Ann Intern Med 168:621-630
Bellan, Steven E; Champredon, David; Dushoff, Jonathan et al. (2018) Couple serostatus patterns in sub-Saharan Africa illuminate the relative roles of transmission rates and sexual network characteristics in HIV epidemiology. Sci Rep 8:6675
Grantz, Kyra H; Chabaari, Winnie; Samuel, Ramolotja Kagiso et al. (2018) Spatial distribution of leprosy in India: an ecological study. Infect Dis Poverty 7:20
Fitzpatrick, Meagan C; Gray, Glenda E; Galvani, Alison P (2018) The Challenge of Vanquishing HIV for the Next Generation-Facing the Future. JAMA Pediatr 172:609-610
Ndeffo-Mbah, Martial L; Vigliotti, Vivian S; Skrip, Laura A et al. (2018) Dynamic Models of Infectious Disease Transmission in Prisons and the General Population. Epidemiol Rev 40:40-57
Lee, Bruce Y; Alfaro-Murillo, Jorge A; Parpia, Alyssa S et al. (2017) The potential economic burden of Zika in the continental United States. PLoS Negl Trop Dis 11:e0005531

Showing the most recent 10 out of 88 publications