Obstetricians and reproductive biologists acknowledge that novel imaging tools are needed to assess the development of the placenta early in gestation in order to identify pregnancies at highest risk of adverse outcomes attributed to placental dysfunction. At our institution, we have utilized sophisticated 3D ultrasound technology and uterine artery Doppler velocimetry to study placental morphology and perfusion in relation to adverse pregnancy outcomes. We have enrolled approximately 1,000 women into our ultrasound studies, which are limited by low positive predictive values and the inability to manipulate 3D ultrasound image sets in real-time at the bedside. Consequently, we believe that a more precise and clinically useful assessment of placental structure and function will require advances in current technology and new partnerships between experts in technology and experts in clinical care of pregnant women. We propose a logical, but comprehensive approach utilizing ultrasound, MRI, and near-infrared spectroscopy (NIRS) to study placental morphology, perfusion, and oxygenation. We have assembled a diverse group of senior investigators at Penn who have substantial experience studying novel techniques and clinical applications for each of these imaging modalities, and our investigative team will be supported by clinical investigators with expertise in women's reproductive health (clinical perinatology, nutrition, and placental biology). The diverse investigative team will be crucial for analysis of data and decisions regarding research directions (go/no-go decisions) over the four- year funding period. Our ultimate objective is to develop a simple, clinically useful imaging modality that can be used at the bedside to identify women early in pregnancy who are at highest risk of developing pregnancy complications attributed to abnormal placental morphology, perfusion, and/or oxygenation. We will recruit women in our ultrasound unit into specific case-control and cohort studies that will focus on development and validation of 3D power Doppler ultrasound, functional MRI, and NIRS techniques. Cross-validation will be employed to identify the most clinically relevant imaging modalities. We then will perform a validation cohort study to determine the relationship among maternal nutrition (focusing on micronutrients in Western diets that induce an unfavorable redox environment), placental imaging (morphology, perfusion, and oxygenation), and neonatal anthropometrics.
Specific aims are: 1) to develop and validate an automated ultrasound segmentation tool to standardize quantitative analysis of placenta morphology in vivo; 2) to develop and validate a quantitative MRI measure of placental perfusion; 3) to develop novel and non-invasive tools to quantify placental oxygenation using functional MRI and NIRS; and 4) to conduct a pilot study using the optimal measures obtained in aims 1-3 to study the impact of maternal nutritional status on placental development and function. We look forward to collaborating with the members of the HPP Technology Development Working Group who are funded by this exciting U01 cooperative agreement.

Public Health Relevance

Abnormal placental development is widely accepted as the cause of common pregnancy complications, including hypertensive disorders of pregnancy, growth-restricted babies, and stillbirth. Novel imaging tools are needed to assess placental development early in pregnancy in order to identify pregnancies at highest risk of adverse pregnancy outcomes associated with placental dysfunction. We have assembled new partnerships between experts in technology and experts in clinical care of pregnant women and propose a logical, but comprehensive approach utilizing ultrasound, MRI, and near-infrared spectroscopy to study placental morphology, perfusion, and oxygenation early in pregnancy.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel ()
Program Officer
Weinberg, David H
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Obstetrics & Gynecology
Schools of Medicine
United States
Zip Code
Rodríguez-Soto, Ana E; Langham, Michael C; Abdulmalik, Osheiza et al. (2018) MRI quantification of human fetal O2 delivery rate in the second and third trimesters of pregnancy. Magn Reson Med 80:1148-1157
Langham, Michael C; Rodríguez-Soto, Ana E; Schwartz, Nadav et al. (2018) In vivo whole-blood T2 versus HbO2 calibration by modulating blood oxygenation level in the femoral vein through intermittent cuff occlusion. Magn Reson Med 79:2290-2296
Yushkevich, Paul A; Pashchinskiy, Artem; Oguz, Ipek et al. (2018) User-Guided Segmentation of Multi-modality Medical Imaging Datasets with ITK-SNAP. Neuroinformatics :
Schwartz, Nadav; Siegal, Julia; Rourke, Aaron et al. (2018) Placental Pulsatility: Quantitative Assessment of Placental Bed Vasculature by 2-Dimensional Doppler Cine Imaging. J Ultrasound Med :
Rodríguez-Soto, Ana E; Abdulmalik, Osheiza; Langham, Michael C et al. (2018) T2 -prepared balanced steady-state free precession (bSSFP) for quantifying whole-blood oxygen saturation at 1.5T. Magn Reson Med 79:1893-1900
Uohara, Michael Y; Beslow, Lauren A; Billinghurst, Lori et al. (2017) Incidence of Recurrence in Posterior Circulation Childhood Arterial Ischemic Stroke. JAMA Neurol 74:316-323
Fogel, Mark A; Li, Christine; Elci, Okan U et al. (2017) Neurological Injury and Cerebral Blood Flow in Single Ventricles Throughout Staged Surgical Reconstruction. Circulation 135:671-682
Lin, Jainn-Jim; Banwell, Brenda L; Berg, Robert A et al. (2017) Electrographic Seizures in Children and Neonates Undergoing Extracorporeal Membrane Oxygenation. Pediatr Crit Care Med 18:249-257
Kirschen, Matthew P; Dori, Yoav; Itkin, Maxim et al. (2016) Cerebral Lipiodol Embolism after Lymphatic Embolization for Plastic Bronchitis. J Pediatr 176:200-3
Hawks, Charlotte; Jordan, Lori C; Gindville, Melissa et al. (2016) Educational Placement After Pediatric Intracerebral Hemorrhage. Pediatr Neurol 61:46-50

Showing the most recent 10 out of 11 publications