Marrow transplantation have taught us that hematopoiesis is supported by multipotent hematopoietic stem cells that can maintain or reconstitute the various blood cell lineages throughout life. Despite advances in our understanding of lineage commitment, this has not translated into improved approaches for treating lineage specific cytopenias. The goal of our application is to further our understanding of lineage commitment and use this knowledge to develop molecular interventions that will drive hematopoiesis toward desired lineages both in vitro and in vivo. The application is specifically focused on megakaryopoiesis, because of the clinical importance of post-transplant thrombocytopenia, and to maximize synergy with our UOl partners at Childrens Hospital of Philadelphia. Towards this goal we propose a multifaceted program with 4 Aims, with each aim involving two or more investigators from the FHCRC/UW Consortium.
In Aim 1, Drs Fero, Paddington and Torok-Storb will generate molecular profiles of functionally defined progenitors in the stem cell to platelet pathway from mouse, dog, and man. These three experimental models have complementary strengths that allow for a comprehensive approach including a robust preclinical in vivo model that can predict clinical outcomes.
In Aim 2 these same investigators will gene modify the defined progenitor cells to express lineage-stage-specific reporters for use in a high content, high through put siRNA screening assays to identify changes in the microenvironment that will control progenitor fate.
A third Aim will test the proliferation and differentation potential of distinct progenitor subsets in response to conditionally activated signaling molecules. For this purpose Drs Blau and Emery will use signaling molecule derivatives that can be activated in response to small molecule drugs called chemical inducers of dimerization (CIDs).
In Aim 4, Drs Kiem and Blau will exploit the canine model of thrombocytopenia to test gene products identified in Aim 2, and cell products expanded in Aim 3 to improve the platelet count in vivo. These in vivo studies in the dog model will establish the safety and efficacy of these therapies in a highly relevant preclinical model

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-J (S1))
Program Officer
Thomas, John
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fred Hutchinson Cancer Research Center
United States
Zip Code
Sorror, Mohamed L; Gooley, Ted A; Maclean, Kirsteen H et al. (2018) Pre-transplant expressions of microRNAs, comorbidities, and post-transplant mortality. Bone Marrow Transplant :
Kotha, Surya; Sun, Sijie; Adams, Amie et al. (2018) Microvasculature-directed thrombopoiesis in a 3D in vitro marrow microenvironment. PLoS One 13:e0195082
Kotha, Surya S; Hayes, Brian J; Phong, Kiet T et al. (2018) Engineering a multicellular vascular niche to model hematopoietic cell trafficking. Stem Cell Res Ther 9:77
Artoni, Filippo; Kreipke, Rebecca E; Palmeira, Ondina et al. (2017) Loss of foxo rescues stem cell aging in Drosophila germ line. Elife 6:
Moody, James D; Levy, Shiri; Mathieu, Julie et al. (2017) First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor. Proc Natl Acad Sci U S A 114:10125-10130
Mathieu, Julie; Ruohola-Baker, Hannele (2017) Metabolic remodeling during the loss and acquisition of pluripotency. Development 144:541-551
Du, Jianhai; Yanagida, Aya; Knight, Kaitlen et al. (2016) Reductive carboxylation is a major metabolic pathway in the retinal pigment epithelium. Proc Natl Acad Sci U S A 113:14710-14715
Wang, Yuhuan; Hayes, Vincent; Jarocha, Danuta et al. (2015) Comparative analysis of human ex vivo-generated platelets vs megakaryocyte-generated platelets in mice: a cautionary tale. Blood 125:3627-36
Byrska-Bishop, Marta; VanDorn, Daniel; Campbell, Amy E et al. (2015) Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J Clin Invest 125:993-1005
Kim, Eunhee; Ilagan, Janine O; Liang, Yang et al. (2015) SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. Cancer Cell 27:617-30

Showing the most recent 10 out of 44 publications