This project focuses on the role of the NS3/4A protease of HCV in disrupting innate cellular antiviral defenses by mediating proteolysis of novel cellular substrates that function as signaling proteins. Our overarching goals include a better understanding of how sequence variation within NS3/4A influences this and how disruption of signaling contributes to cellular permissiveness for HCV replication. The proposed studies build on a long-term and productive effort to define critical HCV-host cell interactions that contribute to the pathogenesis of hepatitis C. During the current funding period, we have developed cell culture systems supporting robust replication of HCV RNA and demonstrated that RNA replication suppresses signaling pathways that are normally activated by viruses. In collaboration with the Gale laboratory (Project 4), we have shown that the NS3/4A protease disrupts two distinct virus-activated cellular signaling pathways, one initiated by dsRNA engagement of Toll-like receptor 3 (TLR3) and the other by recognition of structured viral RNA by the cellular DExH RNA helicase, retinoic acid-inducible gene I (RIG-I). Both pathways lead to activation of interferon regulatory factor 3 (IRF-3) and NF-kappaB, and thus act to induce expression of type 1 interferon, numerous interferon-stimulated genes, proinflammatory cytokines and chemokines which collectively exert a cellular antiviral effect. Our central hypothesis is that disruption of these pathways by NS3/4A contributes significantly to cellular permissiveness for HCV as well as persistence of infection in humans and is thus a target worthy of therapeutic intervention.
Our aims i nclude characterization of the proteolysis of cellular signaling proteins by NS3/4A and the impact of amino acid sequence variation within NS3/4A on disruption of IRF-3 signaling pathways. We will also study the impact of cell culture-adaptive mutations on HCV replication in hepatocytes in vivo, and leverage our growing understanding of the disruption of signaling pathways by HCV with recent advances in RNA replication in vitro to develop cell culture systems that are fully permissive for the virus.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI040035-13
Application #
7649289
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
13
Fiscal Year
2008
Total Cost
$199,186
Indirect Cost
Name
University of Texas Medical Br Galveston
Department
Type
DUNS #
800771149
City
Galveston
State
TX
Country
United States
Zip Code
77555
Jarret, Abigail; McFarland, Adelle P; Horner, Stacy M et al. (2016) Hepatitis-C-virus-induced microRNAs dampen interferon-mediated antiviral signaling. Nat Med 22:1475-1481
Hong, MeeAe; Schwerk, Johannes; Lim, Chrissie et al. (2016) Interferon lambda 4 expression is suppressed by the host during viral infection. J Exp Med 213:2539-2552
Yi, MinKyung; Hu, Fengyu; Joyce, Michael et al. (2014) Evolution of a cell culture-derived genotype 1a hepatitis C virus (H77S.2) during persistent infection with chronic hepatitis in a chimpanzee. J Virol 88:3678-94
Li, Kui; Lemon, Stanley M (2013) Innate immune responses in hepatitis C virus infection. Semin Immunopathol 35:53-72
Wilkins, Courtney; Woodward, Jessica; Lau, Daryl T-Y et al. (2013) IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatology 57:461-9
Grebely, Jason; Prins, Maria; Hellard, Margaret et al. (2012) Hepatitis C virus clearance, reinfection, and persistence, with insights from studies of injecting drug users: towards a vaccine. Lancet Infect Dis 12:408-14
Shimakami, Tetsuro; Yamane, Daisuke; Jangra, Rohit K et al. (2012) Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci U S A 109:941-6
Horner, Stacy M; Park, Hae Soo; Gale Jr, Michael (2012) Control of innate immune signaling and membrane targeting by the Hepatitis C virus NS3/4A protease are governed by the NS3 helix ?0. J Virol 86:3112-20
Welsch, Christoph; Schweizer, Sabine; Shimakami, Tetsuro et al. (2012) Ketoamide resistance and hepatitis C virus fitness in val55 variants of the NS3 serine protease. Antimicrob Agents Chemother 56:1907-15
Zhou, Yan; Callendret, BenoƮt; Xu, Dan et al. (2012) Dominance of the CD4(+) T helper cell response during acute resolving hepatitis A virus infection. J Exp Med 209:1481-92

Showing the most recent 10 out of 156 publications