The objective of this Cooperative Center for Translational Research on Human Immunology and Biodefense is to use analysis of vaccine-induced and naturally acquired immunity to influenza A as a model for defining adaptive and innate immune mechanisms and antiviral protection in children and adults. The Clinical Research Core will be responsible for coordinating protocol design and implementation, providing biostatistical support, obtaining human subjects approvals, and creating and managing the centralized database to record clinical and laboratory data. The Clinical Research core will include a laboratory to receive blood and respiratory specimens, carry out initial sample processing and to distribute relevant specimen to the participating laboratories, perform serology assays and analyses. Centralizing these functions^ is particularly important to assure the most efficient use of small volume pediatric blood samples. As the work proceeds, the Core database will facilitate comparative analyses of results obtained from the individual Research Projects.
The Specific Aims are Aim 1: To design the clinical study and data analysis plan, make the necessary IRB submissions for clinical studies, recruit and enroll adults and children into clinical protocols, assure that subject rights are respected, and provide follow-up to assure collection of complete sets of data.
Aim 2 : To provide initial sample processing and distribution of blood or saliva samples to the Principal Investigators, perform standard serologic assays to determine baseline influenza A immune status and measure antibody responses to vaccination or natural infection. The Core will also perform direct influenza A rapid diagnostic tests to recruit children for the study of natural influenza A infection. Respiratory samples for a subset of children in the vaccine study will be collected weekly by Core personnel during the flu season.
Aim 3 : To provide centralized data management and biostatistical support for the Center. The Clinical Research Support Core will thus administer the clinical protocols under which samples are collected for use in all Research Projects and Research Resource Technical Development Projects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057229-07
Application #
8060525
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
7
Fiscal Year
2010
Total Cost
$771,188
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Goltsev, Yury; Samusik, Nikolay; Kennedy-Darling, Julia et al. (2018) Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging. Cell 174:968-981.e15
Gee, Marvin H; Sibener, Leah V; Birnbaum, Michael E et al. (2018) Stress-testing the relationship between T cell receptor/peptide-MHC affinity and cross-reactivity using peptide velcro. Proc Natl Acad Sci U S A 115:E7369-E7378
Cheung, Peggie; Vallania, Francesco; Warsinske, Hayley C et al. (2018) Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell 173:1385-1397.e14
Mamedov, Murad R; Scholzen, Anja; Nair, Ramesh V et al. (2018) A Macrophage Colony-Stimulating-Factor-Producing ?? T Cell Subset Prevents Malarial Parasitemic Recurrence. Immunity 48:350-363.e7
Kooreman, Nigel G; Kim, Youngkyun; de Almeida, Patricia E et al. (2018) Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo. Cell Stem Cell 22:501-513.e7
Haynes, Winston A; Tomczak, Aurelie; Khatri, Purvesh (2018) Gene annotation bias impedes biomedical research. Sci Rep 8:1362
Sweeney, Timothy E; Thomas, Neal J; Howrylak, Judie A et al. (2018) Multicohort Analysis of Whole-Blood Gene Expression Data Does Not Form a Robust Diagnostic for Acute Respiratory Distress Syndrome. Crit Care Med 46:244-251
Kronstad, Lisa M; Seiler, Christof; Vergara, Rosemary et al. (2018) Differential Induction of IFN-? and Modulation of CD112 and CD54 Expression Govern the Magnitude of NK Cell IFN-? Response to Influenza A Viruses. J Immunol 201:2117-2131
Wilk, Aaron J; Blish, Catherine A (2018) Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 103:629-641
Sweeney, Timothy E; Wynn, James L; Cernada, María et al. (2018) Validation of the Sepsis MetaScore for Diagnosis of Neonatal Sepsis. J Pediatric Infect Dis Soc 7:129-135

Showing the most recent 10 out of 249 publications