Intracellular protein levels, subcellular localization, or activation state are reflective of a cell's functions. Some relevant cell populations are so rare as to make their isolation for standard biochemical analysis essentially impossible. We have previously shown that disease-driven, single-cell intrinsic events can have profound effects on phospho-signaling network architecture and this can be correlated to clinical outcomes. In the case of viral infection, it is unclear whether or not certain individuals possess immune characteristics that make them more or less susceptible to influenza infection. For instance, environmental or individual characteristics such as age and immune system health could have effects upon the immune system's response to viral challenge. We will document the signaling biology of the immune system at two levels of resolution. First, we will investigate and document the changes to immune signaling post-influenza infection of human PBMC in vitro. These studies allow for analysis of influenza infection and the changes that it creates in immune cell subsets at a single cell level. Second, we will study the signaling biology of PBMC in age-selected cohorts of healthy subjects, including monozygotic twins, given either of the two licensed influenza vaccines (TIV or LAIV). These studies provide a fuller understanding of how immune system changes in the young, the healthy adult, and the elderly individual might account for differing response patterns to alternative vaccine strategies and provide in-sights about influenza effects upon signaling behaviors of immune system cells.

Public Health Relevance

The age-driven differences we have already observed in signaling and the potent changes in the signaling of immune response profiles in PBMC infected with influenza, demonstrates this project will enhance our mechanistic understanding of influenza and its interaction with the immune system, and could identify new tools for clinical differential diagnosis. Such studies could provide means to measure responses to influenza infection and approaches to better manage influenza infection with vaccination or drug intervention.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI057229-08
Application #
8249150
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
8
Fiscal Year
2011
Total Cost
$278,951
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Goltsev, Yury; Samusik, Nikolay; Kennedy-Darling, Julia et al. (2018) Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging. Cell 174:968-981.e15
Gee, Marvin H; Sibener, Leah V; Birnbaum, Michael E et al. (2018) Stress-testing the relationship between T cell receptor/peptide-MHC affinity and cross-reactivity using peptide velcro. Proc Natl Acad Sci U S A 115:E7369-E7378
Cheung, Peggie; Vallania, Francesco; Warsinske, Hayley C et al. (2018) Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell 173:1385-1397.e14
Mamedov, Murad R; Scholzen, Anja; Nair, Ramesh V et al. (2018) A Macrophage Colony-Stimulating-Factor-Producing ?? T Cell Subset Prevents Malarial Parasitemic Recurrence. Immunity 48:350-363.e7
Kooreman, Nigel G; Kim, Youngkyun; de Almeida, Patricia E et al. (2018) Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo. Cell Stem Cell 22:501-513.e7
Haynes, Winston A; Tomczak, Aurelie; Khatri, Purvesh (2018) Gene annotation bias impedes biomedical research. Sci Rep 8:1362
Sweeney, Timothy E; Thomas, Neal J; Howrylak, Judie A et al. (2018) Multicohort Analysis of Whole-Blood Gene Expression Data Does Not Form a Robust Diagnostic for Acute Respiratory Distress Syndrome. Crit Care Med 46:244-251
Kronstad, Lisa M; Seiler, Christof; Vergara, Rosemary et al. (2018) Differential Induction of IFN-? and Modulation of CD112 and CD54 Expression Govern the Magnitude of NK Cell IFN-? Response to Influenza A Viruses. J Immunol 201:2117-2131
Wilk, Aaron J; Blish, Catherine A (2018) Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 103:629-641
Sweeney, Timothy E; Wynn, James L; Cernada, María et al. (2018) Validation of the Sepsis MetaScore for Diagnosis of Neonatal Sepsis. J Pediatric Infect Dis Soc 7:129-135

Showing the most recent 10 out of 249 publications