Influenza is a serious public health issue; vulnerable populations, including young children and the elderly, are especially at risk of influenza-related morbidity and mortality. Due to antigenic drift and shift of the virus as well as poor vaccine efficacy in older people, current immunization efforts fall substantially short of providing protection to the population. Research toward developing a universal influenza vaccine have been hindered by a lack of methods to model the human adaptive immune response. In this context, we have recently developed a tonsil organoid system using discarded human tonsil cells from sleep apnea patients that recapitulates at least some of the key features of an adaptive immune response against influenza, including high affinity antibodies specific for Influenza antigens and the HA molecule. We believe that this fully human system will be an ideal platform to explore and manipulate the anti-flu response in humans.
In Aim 1, we will identify the minimal cellular requirements to develop protective influenza-specific T and B cell responses using these organoids.
In Aim 2 we will investigate the immunomodulatory effects of adjuvants, particularly whether they influence the specificity, diversity or affinity of the influenza response.
In Aim 3 we will manipulate the expression of particular genes that are likely to be important in the antibody and T cell responses and which address specific hypotheses-such as does AID play a major role in this response with respect to the specific antibodies that are generated in this system? Other genes that might alter the affinity or glycosylation pattern of the antibodies will also be investigated, as well as at least one that characterizes a uniquely flu specific response (CD38) and is expressed in germinal centers.
In Aim 4 we combine computational modeling with nanoparticle and virosome stimulation of these organoids, test hypotheses about the optimal density of HA head vs stem constructs in order skew the antibody response towards broadly neutralizing, high affinity antibodies. These data could significantly aid the formulation of new vaccine strategies for the much hoped for universal flu vaccine.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
Wilk, Aaron J; Blish, Catherine A (2018) Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 103:629-641
Sweeney, Timothy E; Wynn, James L; Cernada, María et al. (2018) Validation of the Sepsis MetaScore for Diagnosis of Neonatal Sepsis. J Pediatric Infect Dis Soc 7:129-135
Bukhari, Syed Ahmad Chan; O'Connor, Martin J; Martínez-Romero, Marcos et al. (2018) The CAIRR Pipeline for Submitting Standards-Compliant B and T Cell Receptor Repertoire Sequencing Studies to the National Center for Biotechnology Information Repositories. Front Immunol 9:1877
Azad, Tej D; Donato, Michele; Heylen, Line et al. (2018) Inflammatory macrophage-associated 3-gene signature predicts subclinical allograft injury and graft survival. JCI Insight 3:
Leipold, Michael D; Obermoser, Gerlinde; Fenwick, Craig et al. (2018) Comparison of CyTOF assays across sites: Results of a six-center pilot study. J Immunol Methods 453:37-43
Sibener, Leah V; Fernandes, Ricardo A; Kolawole, Elizabeth M et al. (2018) Isolation of a Structural Mechanism for Uncoupling T Cell Receptor Signaling from Peptide-MHC Binding. Cell 174:672-687.e27
Ju, Chia-Hsin; Blum, Lisa K; Kongpachith, Sarah et al. (2018) Plasmablast antibody repertoires in elderly influenza vaccine responders exhibit restricted diversity but increased breadth of binding across influenza strains. Clin Immunol 193:70-79
Sweeney, Timothy E; Perumal, Thanneer M; Henao, Ricardo et al. (2018) A community approach to mortality prediction in sepsis via gene expression analysis. Nat Commun 9:694
Davis, Mark M; Tato, Cristina M (2018) Will Systems Biology Deliver Its Promise and Contribute to the Development of New or Improved Vaccines? Seeing the Forest Rather than a Few Trees. Cold Spring Harb Perspect Biol 10:
Gee, Marvin H; Han, Arnold; Lofgren, Shane M et al. (2018) Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell 172:549-563.e16

Showing the most recent 10 out of 249 publications