The Human Immune Monitoring Center (HIMC) has been a comprehensive resource for immunological assays at Stanford for over ten years. The HIMC Core will leverage this facility and its robust infrastructure to provide biobanking, assays, and data organization services to the CCHI U19. Coordinating with the Clinical Core, blood samples will be processed for serum, RNA, and DNA, and biobanked according to well-optimized, standard procedures. Together with the existing inventory of >5000 specimens from previous CCHI and HIPC studies, these samples will be distributed to CCHI projects as needed, using an existing online portal to search for and request specific samples, with approval from an oversight committee. State-of-the-art, standardized immune assays will also be applied to the CCHI samples, including CyTOF mass cytometry, multiplexed Luminex cytokine analysis, and whole blood RNAseq, to provide comprehensive immunological data. As required for specific CCHI projects, custom Luminex panels and single-cell TCRseq assays will also be performed. Finally, the HIMC Core will integrate data from all HIMC assays using the online database, Stanford Data Miner (SDM). Here the assay data will be mapped to clinical and demographic information, for easy access and downloading by the Informatics Core, or by the Administrative Core, for upload to ImmPort. Existing scripts allow formatting of data from SDM into ImmPort templates for samples, persons, and assay results. The HIMC Core will create a valuable database of clinical specimens and comprehensive immunological data, that will not only serve the needs of the CCHI U19 projects, but many other projects for years to come.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
Sweeney, Timothy E; Azad, Tej D; Donato, Michele et al. (2018) Unsupervised Analysis of Transcriptomics in Bacterial Sepsis Across Multiple Datasets Reveals Three Robust Clusters. Crit Care Med 46:915-925
Lin, Dongxia; Maecker, Holden T (2018) Mass Cytometry Assays for Antigen-Specific T Cells Using CyTOF. Methods Mol Biol 1678:37-47
Goltsev, Yury; Samusik, Nikolay; Kennedy-Darling, Julia et al. (2018) Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging. Cell 174:968-981.e15
Gee, Marvin H; Sibener, Leah V; Birnbaum, Michael E et al. (2018) Stress-testing the relationship between T cell receptor/peptide-MHC affinity and cross-reactivity using peptide velcro. Proc Natl Acad Sci U S A 115:E7369-E7378
Cheung, Peggie; Vallania, Francesco; Warsinske, Hayley C et al. (2018) Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging. Cell 173:1385-1397.e14
Mamedov, Murad R; Scholzen, Anja; Nair, Ramesh V et al. (2018) A Macrophage Colony-Stimulating-Factor-Producing ?? T Cell Subset Prevents Malarial Parasitemic Recurrence. Immunity 48:350-363.e7
Kooreman, Nigel G; Kim, Youngkyun; de Almeida, Patricia E et al. (2018) Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo. Cell Stem Cell 22:501-513.e7
Haynes, Winston A; Tomczak, Aurelie; Khatri, Purvesh (2018) Gene annotation bias impedes biomedical research. Sci Rep 8:1362
Sweeney, Timothy E; Thomas, Neal J; Howrylak, Judie A et al. (2018) Multicohort Analysis of Whole-Blood Gene Expression Data Does Not Form a Robust Diagnostic for Acute Respiratory Distress Syndrome. Crit Care Med 46:244-251
Kronstad, Lisa M; Seiler, Christof; Vergara, Rosemary et al. (2018) Differential Induction of IFN-? and Modulation of CD112 and CD54 Expression Govern the Magnitude of NK Cell IFN-? Response to Influenza A Viruses. J Immunol 201:2117-2131

Showing the most recent 10 out of 249 publications