Core C:The overall goal of this Center proposal is to develop effective diagnostic, prognostic and therapeuticmeasures against NIAID Category A-C pathogens. One of the objectives of the Center is to establishbiosignatures of human cells exposed in vitro and in vivo to Category A-C pathogens. In this context, themain purpose of the Luminex Core will be to provide Investigators of the Center with expertise in multiplexingi protein analysis using Luminex system. This analysis will complement and validate the results obtained frommicroarray gene expression analysis.Objectives: To establish and distribute within the Center standard operating procedures (SOP s) for multiplexing proteinanalysis using Luminex system. To analyze samples obtained from Investigators of the Center. To validate expression levels of candidate proteins by other methods (ELISA, Cytokine Bead Array,intracellular stainings and flow cytometry) To correlate the results of gene expression with protein expressionWe view this analysis as part of our long term goal, which is to develop proteomics as it applies to thediagnosis and prognosis of human immune dysfunctions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
3U19AI057234-05S1
Application #
7686586
Study Section
Special Emphasis Panel (ZAI1-PTM-I (M4))
Project Start
2008-04-01
Project End
2009-03-31
Budget Start
2008-04-01
Budget End
2009-03-31
Support Year
5
Fiscal Year
2008
Total Cost
$163,814
Indirect Cost
Name
Baylor Research Institute
Department
Type
DUNS #
145745022
City
Dallas
State
TX
Country
United States
Zip Code
75204
Athale, Shruti; Banchereau, Romain; Thompson-Snipes, LuAnn et al. (2017) Influenza vaccines differentially regulate the interferon response in human dendritic cell subsets. Sci Transl Med 9:
Todorova, Biliana; Salabert, Nina; Tricot, Sabine et al. (2017) Fibered Confocal Fluorescence Microscopy for the Noninvasive Imaging of Langerhans Cells in Macaques. Contrast Media Mol Imaging 2017:3127908
Silvin, Aymeric; Yu, Chun I; Lahaye, Xavier et al. (2017) Constitutive resistance to viral infection in human CD141+ dendritic cells. Sci Immunol 2:
Yoshimatsu, Gumpei; Kunnathodi, Faisal; Saravanan, Prathab Balaji et al. (2017) Pancreatic ?-Cell-Derived IP-10/CXCL10 Isletokine Mediates Early Loss of Graft Function in Islet Cell Transplantation. Diabetes 66:2857-2867
Mathew, Anuja (2017) Humanized mouse models to study human cell-mediated and humoral responses to dengue virus. Curr Opin Virol 25:76-80
Yin, Wenjie; Gorvel, Laurent; Zurawski, Sandra et al. (2016) Functional Specialty of CD40 and Dendritic Cell Surface Lectins for Exogenous Antigen Presentation to CD8(+) and CD4(+) T Cells. EBioMedicine 5:46-58
Blohmke, Christoph J; Darton, Thomas C; Jones, Claire et al. (2016) Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever. J Exp Med 213:1061-77
Kovats, S; Turner, S; Simmons, A et al. (2016) West Nile virus-infected human dendritic cells fail to fully activate invariant natural killer T cells. Clin Exp Immunol 186:214-226
Schmitt, Nathalie; Liu, Yang; Bentebibel, Salah-Eddine et al. (2016) Molecular Mechanisms Regulating T Helper 1 versus T Follicular Helper Cell Differentiation in Humans. Cell Rep 16:1082-1095
Raymond, Donald D; Stewart, Shaun M; Lee, Jiwon et al. (2016) Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain. Nat Med 22:1465-1469

Showing the most recent 10 out of 129 publications