The Genomics and Computational Biology Core provides a critical means by which this U19 will achieve its goal of understanding the human innate and adaptive response to Yellow Fever Virus (YFV) in the young and aged. The Core will provide expertise, computational support and novel gene expression analysis technologies to enable the experiments detailed in this proposal. The Core will be centered at Dana-Farber Cancer Institute (DFCI), a leading institution in the application of genomic technologies, and include expert computational support from the Broad Institute of Harvard and MIT, and Georgia Institute of Technology. The Core will serve two primary functions. First, it will generate genomic data using a highthroughput expression profiling platform developed by our group that allows large numbers of samples to be profiled at low cost. It will also provide training for Project sites to generate genomic data from rare populations of cells using optimized RNA amplification approaches. Second, the Core will assist the projects to provide centralized design, development and analysis of genomicbased research that is instrumental to the projects.

Public Health Relevance

The Projects in this U19 will rely heavily on a range of genomics technologies to interrogate the innate and adaptive response to YFV in humans. The Genomics and Computational Biology Core will provide the analytic and experimental tools that will enable the Projects to execute their proposed goals. Characterizing the human immune response to YFV will accelerate the development of molecular predictors of immunity in humans, and optimize vaccination strategies for infectious disease.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
United States
Zip Code
Mezger, Anja; Klemm, Sandy; Mann, Ishminder et al. (2018) High-throughput chromatin accessibility profiling at single-cell resolution. Nat Commun 9:3647
Ye, Zhongde; Li, Guangjin; Kim, Chulwoo et al. (2018) Regulation of miR-181a expression in T cell aging. Nat Commun 9:3060
Burke, Rachel M; Whitehead Jr, Ralph D; Figueroa, Janet et al. (2018) Effects of Inflammation on Biomarkers of Vitamin A Status among a Cohort of Bolivian Infants. Nutrients 10:
Burke, Rachel M; Rebolledo, Paulina A; Aceituno, Anna M et al. (2018) Effect of infant feeding practices on iron status in a cohort study of Bolivian infants. BMC Pediatr 18:107
Hagan, Thomas; Pulendran, Bali (2018) Will Systems Biology Deliver Its Promise and Contribute to the Development of New or Improved Vaccines? From Data to Understanding through Systems Biology. Cold Spring Harb Perspect Biol 10:
Adekambi, Toidi; Ibegbu, Chris C; Cagle, Stephanie et al. (2018) High Frequencies of Caspase-3 Expressing Mycobacterium tuberculosis-Specific CD4+ T Cells Are Associated With Active Tuberculosis. Front Immunol 9:1481
Chen, Yao-Qing; Wohlbold, Teddy John; Zheng, Nai-Ying et al. (2018) Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies. Cell 173:417-429.e10
Moore, James; Ahmed, Hasan; Jia, Jonathan et al. (2018) What Controls the Acute Viral Infection Following Yellow Fever Vaccination? Bull Math Biol 80:46-63
Li, Yinyin; Goronzy, Jörg J; Weyand, Cornelia M (2018) DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system. Exp Gerontol 105:118-127
Henry, Carole; Palm, Anna-Karin E; Krammer, Florian et al. (2018) From Original Antigenic Sin to the Universal Influenza Virus Vaccine. Trends Immunol 39:70-79

Showing the most recent 10 out of 257 publications