The Training and Education Core will focus on the post-doctoral trainees who will be involved in the Research Projects and to a lesser extent on the faculty researchers whose training is not in radiation biology. There will be both a laboratory and a didactic component. The laboratory training will consist of hands-on research under the direction of Project Leaders. Trainees will gain experience in the use of assays, methods, reagents, animal models, and technologies to study the radiation response of kidney, lung and CMS; and will use their experience to study the mitigation and/or treatment of radiation injuries. Included in the Core is provision for trainees to spend some of their time in labs of more than one Project. It is also expected that the trainees will prepare the results of their studies for peer-reviewed publication. The didactic program will cover the principles governing the response of normal tissue to radiation through a series of talks from experts from within and outside the Center. The lecture series will consist of a videotaped seminar series along with a self-test module. In addition, trainees will be expected to attend laboratory journal club, departmental/institutional speakers programs and ongoing radiation biology lectures being delivered to radiation oncology residents in order that the trainee gains a broader perspective of his research and areas of specialties. A website based at Henry Ford Health Systems, but shared between members of the consortium, is a fundamental part of the Training and Education Program. In summary, the purpose of this core is to train the next generation of normal tissue radiobiologists.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI067734-01
Application #
7055669
Study Section
Special Emphasis Panel (ZCA1-SRRB-E (O1))
Project Start
2005-09-01
Project End
2010-07-31
Budget Start
2005-09-01
Budget End
2006-07-31
Support Year
1
Fiscal Year
2005
Total Cost
$328,832
Indirect Cost
Name
Medical College of Wisconsin
Department
Type
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Raber, J; Davis, M J; Pfankuch, T et al. (2017) Mitigating effect of EUK-207 on radiation-induced cognitive impairments. Behav Brain Res 320:457-463
Cohen, Eric P; Fish, Brian L; Moulder, John E (2016) Clinically Relevant Doses of Enalapril Mitigate Multiple Organ Radiation Injury. Radiat Res 185:313-8
Medhora, Meetha; Haworth, Steven; Liu, Yu et al. (2016) Biomarkers for Radiation Pneumonitis Using Noninvasive Molecular Imaging. J Nucl Med 57:1296-301
Medda, Rituparna; Lyros, Orestis; Schmidt, Jamie L et al. (2015) Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells. Microvasc Res 97:167-80
Medhora, Meetha; Gao, Feng; Glisch, Chad et al. (2015) Whole-thorax irradiation induces hypoxic respiratory failure, pleural effusions and cardiac remodeling. J Radiat Res 56:248-60
Moulder, John E; Cohen, Eric P; Fish, Brian L (2014) Mitigation of experimental radiation nephropathy by renin-equivalent doses of angiotensin converting enzyme inhibitors. Int J Radiat Biol 90:762-8
Kim, Jae Ho; Jenrow, Kenneth A; Brown, Stephen L (2014) Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J 32:103-15
Medhora, Meetha; Gao, Feng; Wu, Qingping et al. (2014) Model development and use of ACE inhibitors for preclinical mitigation of radiation-induced injury to multiple organs. Radiat Res 182:545-55
Mahmood, Javed; Jelveh, Salomeh; Zaidi, Asif et al. (2014) Targeting the Renin-angiotensin system combined with an antioxidant is highly effective in mitigating radiation-induced lung damage. Int J Radiat Oncol Biol Phys 89:722-8
Moulder, John E (2014) 2013 Dade W. Moeller lecture: medical countermeasures against radiological terrorism. Health Phys 107:164-71

Showing the most recent 10 out of 75 publications