The Genomic Instability Core will be housed in the UCLA Clinical and Molecular Cytogenetics Labs located in a 3000 sq ft space in the Rehab Building on the UCLA campus with considerable facilities for providing standard cytogenetics and Fluorescence In Situ Hybridization (FISH) services for investigators working on both Human and Mouse cells. Chromosomal aberrations are sensitive indicators of a previous exposure to ionizing irradiation. The Core's objectives are to provide cytogenetic services to project and pilot research program investigators in the UCLA-CMCR. For Projects 1 and 3, the aims are: 1) to determine the effect of radiomodulatory compounds on chromosome aberrations in cells from mouse embryos (Project 1), and 2) to characterize the effects of the same compounds on radiation-induced chromosomal aberrations in human cells, including cells from patients with radiosensitive/repair deficiency syndromes (Project 3). The Core will use various cytogenetic and molecular cytogenetic techniques to achieve these aims, including karyotyping, chromosome/chromatid breakage studies, and micronuclei analyses. The studies will be supplemented by FISH experiments with centromere-specific probes for numerical abnormalities such aneuploidy, region specific probes for structural aberrations, telomere-specific probes for chromosomal integrity studies, and whole chromosome paints and 24-color multicolor FISH for complex chromosome aberration analyses.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI067769-01
Application #
7055619
Study Section
Special Emphasis Panel (ZCA1-SRRB-E (O1))
Project Start
2005-09-01
Project End
2010-07-31
Budget Start
2005-09-01
Budget End
2006-07-31
Support Year
1
Fiscal Year
2005
Total Cost
$279,585
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Woods, Kaley; Lee, Percy; Kaprealian, Tania et al. (2018) Cochlea-sparing acoustic neuroma treatment with 4? radiation therapy. Adv Radiat Oncol 3:100-107
Murray, David; Mirzayans, Razmik; McBride, William H (2018) Defenses against Pro-oxidant Forces - Maintenance of Cellular and Genomic Integrity and Longevity. Radiat Res 190:331-349
McBride, William H; Ganapathy, Ekambaram; Lee, Mi-Heon et al. (2017) A perspective on the impact of radiation therapy on the immune rheostat. Br J Radiol 90:20170272
Sasine, Joshua P; Yeo, Kelly T; Chute, John P (2017) Concise Review: Paracrine Functions of Vascular Niche Cells in Regulating Hematopoietic Stem Cell Fate. Stem Cells Transl Med 6:482-489
Graham, Nicholas A; Minasyan, Aspram; Lomova, Anastasia et al. (2017) Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures. Mol Syst Biol 13:914
Kar, Upendra K; Simonian, Margaret; Whitelegge, Julian P (2017) Integral membrane proteins: bottom-up, top-down and structural proteomics. Expert Rev Proteomics 14:715-723
Duhachek-Muggy, Sara; Bhat, Kruttika; Vlashi, Erina et al. (2017) Growth Differentiation Factor 11 does not Mitigate the Lethal Effects of Total-Abdominal Irradiation. Radiat Res 188:469-475
Himburg, Heather A; Doan, Phuong L; Quarmyne, Mamle et al. (2017) Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms. Nat Med 23:91-99
Micewicz, Ewa D; Kim, Kwanghee; Iwamoto, Keisuke S et al. (2017) 4-(Nitrophenylsulfonyl)piperazines mitigate radiation damage to multiple tissues. PLoS One 12:e0181577
Purbey, Prabhat K; Scumpia, Philip O; Kim, Peter J et al. (2017) Defined Sensing Mechanisms and Signaling Pathways Contribute to the Global Inflammatory Gene Expression Output Elicited by Ionizing Radiation. Immunity 47:421-434.e3

Showing the most recent 10 out of 93 publications