The misuse of ionizing radiation or nuclear devices as weapons of terrorism has been recognized as a major U.S. public health threat. The greatest risk to these victims of radiation exposure is the hematopoietic acute radiation syndrome (H-ARS), which results in life-threatening complications such as infections and refractory bleeding. Specific therapies directed at H-ARS to accelerate hematopoietic regeneration following radiation injury have been few. Since marrow endothelial cells can govern hematologic recovery after irradiation without homing to the bone marrow, endothelial cells can mediate their radioprotective effects through elaboration of hematopoietic cytokines or soluble factors. Another mechanism of cellular communication is through transfer of proteins and nucleic materials via secretion of extracellular vesicles (EVs). EVs range in size from 100-250 nm and bear both nucleic acids and proteins that have potential to regulate neighboring cells. We hypothesize that ECs exert their regenerative effects through EVs. We have shown that treatment of irradiated hematopoietic stem/progenitor cells with either syngeneic or allogeneic EVs from genetically distinct mice results in comparable expansion of the stem cell pool, suggesting they could be immunologically tolerant. Compared to control mice treated with granulocyte colony stimulating factor (G-CSF), it is possible that EVs are at least comparable and are likely superior to G-CSF for prolonging survival after lethal-dose irradiation. Our overriding goal is to demonstrate the radiotherapeutic capacity of EVs. In doing so, we will develop a cellular-based therapy for H-ARS with potential for off-the-shelf delivery to victims in the setting of a mass casualty disaster.

Public Health Relevance

Radiation exposures from nuclear terrorist attacks or nuclear accidents can cause myelosuppression or death. This project aims to uncover a novel mechanism by which endothelial cells participate in blood stem cell regeneration through cell-to-cell communication via secretion of extracellular vesicles. The proposed research may result in the use of endothelial-cell derived extracellular vesicles as an off-the-shelf therapy for the treatment of myelosuppression that occur following radiation exposures as well as in a wide variety of other clinical settings including chemotherapy and stem cell transplantation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
2U19AI067798-16
Application #
9940007
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
16
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Cline, John Mark; Dugan, Greg; Bourland, John Daniel et al. (2018) Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP5+, Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation. Antioxidants (Basel) 7:
Farris, Michael; McTyre, Emory R; Okoukoni, Catherine et al. (2018) Cortical Thinning and Structural Bone Changes in Non-Human Primates after Single-Fraction Whole-Chest Irradiation. Radiat Res 190:63-71
Naqvi, Ibtehaj; Gunaratne, Ruwan; McDade, Jessica E et al. (2018) Polymer-Mediated Inhibition of Pro-invasive Nucleic Acid DAMPs and Microvesicles Limits Pancreatic Cancer Metastasis. Mol Ther 26:1020-1031
Ghandhi, Shanaz A; Turner, Helen C; Shuryak, Igor et al. (2018) Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells. PLoS One 13:e0191402
Castle, Katherine D; Daniel, Andrea R; Moding, Everett J et al. (2018) Mice Lacking RIP3 Kinase are not Protected from Acute Radiation Syndrome. Radiat Res 189:627-633
Andrews, Rachel N; Metheny-Barlow, Linda J; Peiffer, Ann M et al. (2017) Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates. Radiat Res 187:599-611
Chen, Liang; Wilson, Justin E; Koenigsknecht, Mark J et al. (2017) NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat Immunol 18:541-551
Fanning, K M; Pfisterer, B; Davis, A T et al. (2017) Changes in microvascular density differentiate metabolic health outcomes in monkeys with prior radiation exposure and subsequent skeletal muscle ECM remodeling. Am J Physiol Regul Integr Comp Physiol 313:R290-R297
Swanson, Karen V; Junkins, Robert D; Kurkjian, Cathryn J et al. (2017) A noncanonical function of cGAMP in inflammasome priming and activation. J Exp Med 214:3611-3626
Kurkjian, Cathryn J; Guo, Hao; Montgomery, Nathan D et al. (2017) The Toll-Like Receptor 2/6 Agonist, FSL-1 Lipopeptide, Therapeutically Mitigates Acute Radiation Syndrome. Sci Rep 7:17355

Showing the most recent 10 out of 197 publications