The Radiobiological Standardization Core will provide standardized radiobiology tests for all projects within the CMCR with respect to tissue culture assays, animal model assays in the mouse and Zebrafish to ensure uniformity, reproducibility, and statistical significance of all radiobiological tests. The Radiobiological Standardization Core will function to deliver three specific aims:
Aim 1 : Ensure standardized in vitro cell culture, DNA damage quantitation, and comparative analysis of radioprotective and radiation mitigating functions of all new products developed by the five projects within the CMCR.
Aim 2 : Deliver timely reports and provide rapid analysis of cell culture and animal responses to new drugs developed by the five projects.
Aim 3 : Determine whether the Zebrafish represents an accurate, rapid, and inexpensive alternative to mouse assays for screening new radiobiological protectors and mitigators. The Radiobiological Standardization Core has as a main goal: the relief of the five projects from the diluted effort of doing their own tissue culture and animal model analysis of new products. By standardization of in vitro and in vivo radiation biology testing in this core facility, the five projects should be able to focus on the critical task of interaction between chemistry and radiation biology for drug discovery and development.
Lou, Wenjia; Ting, Hsiu-Chi; Reynolds, Christian A et al. (2018) Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1354-1368 |
Anthonymuthu, Tamil S; Kenny, Elizabeth M; Lamade, Andrew M et al. (2018) Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 124:493-503 |
Hassannia, Behrouz; Wiernicki, Bartosz; Ingold, Irina et al. (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 128:3341-3355 |
Conrad, Marcus; Kagan, Valerian E; Bayir, Hülya et al. (2018) Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 32:602-619 |
Stoyanovsky, Anastas D; Stoyanovsky, Detcho A (2018) 1-Oxo-2,2,6,6-tetramethylpiperidinium bromide converts ?-H N,N-dialkylhydroxylamines to nitrones via a two-electron oxidation mechanism. Sci Rep 8:15323 |
Zhou, Shuanhu; Glowacki, Julie (2018) Dehydroepiandrosterone and Bone. Vitam Horm 108:251-271 |
Robinson, Andria R; Yousefzadeh, Matthew J; Rozgaja, Tania A et al. (2018) Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 17:259-273 |
Gaschler, Michael M; Andia, Alexander A; Liu, Hengrui et al. (2018) FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14:507-515 |
Tyurina, Yulia Y; Shrivastava, Indira; Tyurin, Vladimir A et al. (2018) ""Only a Life Lived for Others Is Worth Living"": Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxid Redox Signal 29:1333-1358 |
Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Epand, Richard M et al. (2018) NME4/nucleoside diphosphate kinase D in cardiolipin signaling and mitophagy. Lab Invest 98:228-232 |
Showing the most recent 10 out of 203 publications