The Pilot Projects Program Core has as its mission the identification and facilitation of funding for innovative new pilot projects to stimulate interaction between chemists and radiation biologists with an ultimate goal of bringing new chemists into the field of radiation biology, specifically the fields of designing new radioprotectors and radiation mitigator drugs. The goals of the Pilot Projects Program Core are: 1. Provide seed funding opportunities for two years for initial investigation of promising novel research in chemistry or drug design for new radiation protectors and radiation mitigators. 2. To simulate both basic clinical and translational research in areas of high priority in radiation protection/radiation mitigation. 3. To facilitate development into full projects of the CMCR, those appropriate pilot projects, or alternatively to stimulate pilot project development to competitive levels for independent investigator initiated proposals to the NIAID or other NIH agencies or other peer-reviewed funding sources. 4. To increase the visibility of the CMCR activities and increase participation between CMCR participating in institutions, clinicians, researchers, but predominantly members of the chemistry departments of major universities to incentivize them for entry into focused participation in radiobiology research. It is the goal of the Pilot Projects Core Facility to bring innovative new projects into the CMCR with an ultimate goal of developing, testing, and delivering new radiation protector and radiation mitigator drugs.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI068021-02
Application #
7310467
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2006-09-01
Budget End
2007-08-31
Support Year
2
Fiscal Year
2006
Total Cost
$159,373
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Wang, Yi-Jun; Fletcher, Rochelle; Yu, Jian et al. (2018) Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis 5:194-203
Chen, Dongshi; Tong, Jingshan; Yang, Liheng et al. (2018) PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc Natl Acad Sci U S A 115:3930-3935
Chen, Dongshi; Ni, Hong-Min; Wang, Lei et al. (2018) PUMA induction mediates acetaminophen-induced necrosis and liver injury. Hepatology :
Chao, Honglu; Anthonymuthu, Tamil S; Kenny, Elizabeth M et al. (2018) Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury. JCI Insight 3:
Steinman, Justin; Epperly, Michael; Hou, Wen et al. (2018) Improved Total-Body Irradiation Survival by Delivery of Two Radiation Mitigators that Target Distinct Cell Death Pathways. Radiat Res 189:68-83
Lou, Wenjia; Ting, Hsiu-Chi; Reynolds, Christian A et al. (2018) Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1354-1368
Anthonymuthu, Tamil S; Kenny, Elizabeth M; Lamade, Andrew M et al. (2018) Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 124:493-503
Hassannia, Behrouz; Wiernicki, Bartosz; Ingold, Irina et al. (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 128:3341-3355
Conrad, Marcus; Kagan, Valerian E; Bayir, Hülya et al. (2018) Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 32:602-619
Stoyanovsky, Anastas D; Stoyanovsky, Detcho A (2018) 1-Oxo-2,2,6,6-tetramethylpiperidinium bromide converts ?-H N,N-dialkylhydroxylamines to nitrones via a two-electron oxidation mechanism. Sci Rep 8:15323

Showing the most recent 10 out of 203 publications