This program focuses on vaccine candidates for HIV-1 based on two replication-defective chimpanzee (chimp) adenovirus (Ad) vectors, termed AdC6 and AdC7. The program has four interlinked goals. Our first goal is to pursue clinical development of AdC6 and AdC7 vectors expressing gag of HIV-1 to test the safety of each vector in dose-escalation phase I trials, and to assess the immunogenicity of both vectors combined in a heterologous prime boost regimen in a phase IIA trial. Clinical trials will be conducted under the auspices of the NIAID-sponsored HIV Vaccine Trials Network (HVTN). Our second goal is to further optimize the AdC6 and AdC7 vectors for later stage clinical trials. Our third goal is a research objective to define the quality of T cell responses to AdC6/AdC7 prime boost regimens in both experimental animals and human vaccine recipients. Evidence is mounting that different vaccine regimens not only influence the magnitude but also the quality of the ensuing cellular immune responses, and that this quality substantially influences progression of HIV-1 infections toward disease. Vaccine-induced correlates of protection against HIV-1 associated illness remain poorly defined, which has made it difficult to compare the clinical potential of the vectors considered as platforms for a candidate HIV vaccine.
We aim to carefully define pertinent characteristics of the cellular immune responses elicited by chimp Ad vector prime boost regimens in preclinical models, and how such characteristics correlate with protection against challenge with model pathogens. Our fourth goal is to elucidate the effect of pre-existing T cells to conserved antigens of Ads on the performance of chimp Ad vectors as vaccine carriers. The prevalence of such T cells will be determined in human cohorts from the US and Africa. Their effect on vaccine-induced T cell responses will first be assessed in experimental animals and then in human vaccine recipients. Definition of the characteristics of effective immune responses in animals with comparison studies in human vaccine recipients will advance our understanding of the correlates of immune protection to be pursued in future efforts of AIDS vaccine development. ? ? PROJECT 1: CLINICAL DEVELOPMENT OF CHIMP AD VECTORS (ERTL, H.) ? ? PROJECT 1 DESCRIPTION (provided by applicant): This Project is designed to pursue clinical development of two replication-defective chimpanzee (chimp) adenovirus (Ad) vectors, termed AdC6 and AdC7. We developed the chimp Ad vectors to circumvent preexisting neutralizing antibodies, which are commonly found in humans to human serotypes of adenoviruses and which reduce uptake of the corresponding Ad vectors and hence their ability to induce transgene product-specific immune responses. Neutralizing antibodies to AdC6 and AdC7 are rare in humans residing in the US or Asia, and lower in Sub-Saharan Africans than antibodies against other Ad vectors currently in testing. AdC6 and AdC7 vectors expressing antigens of HIV-1 or SIV induce potent and sustained T cell mediated immune responses in experimental animals, which increase upon sequential use of the two vectors in prime boost regimens. In rhesus macaques primed with AdC7 vectors or Ad vectors of the human serotype 5 (AdHu5) and then challenged with SHIV89.6P, AdC7 primed NHPs showed better control of viral load and less loss of CD4+ T cells compared to animals primed with the AdHu5 vectors. Similar to AdHu5, AdC6 and AdC7 vectors are genetically stable, exhibit suitable growth characteristics, and production and quality control of vectors have been established. We are proposing to develop AdC6 and AdC7 vectors for initial early phase human clinical trials that express gag of HIV-1 clade B (AdC6HIVgag, AdC7HIVgag). Clinical data on AdHu5 based HIV-1 gag vaccines are available and this will allow for a comparison with the chimp Ad vectors. Pre-clinical development and testing of AdC6 and AdC7 vectors expressing additional sequences of HIV-1 for their potential use in future large scale clinical trials will be pursued by Project 2 of this application. In this application we plan to initiate two phase I trials which will address the safety and tolerability of the AdC6 and AdC7 vectors in separate dose escalation trials in human volunteers. In addition, since we do not expect that a single dose of a vaccine, as can be tested in the phase I trials, will result in impressive HIV-1 antigen-specific immune responses, we are proposing a phase IIA trial in which the two chimp Ad vectors are tested in a prime boost regimen, using each vector twice in a 4-dose regimen in human volunteers. We will conduct the clinical trials through HVTN, which is best poised to recruit and enroll human volunteers, conduct the trial in adherence to Good Clinical Practice (GCP) guidelines for ethical conduct of research involving human subjects and requisite standards and reporting requirements of U.S. Food and Drug Administration (FDA) and National Institutes of Health (NIH), ensure trial compliance, and assess vaccine safety and immunogenicity using sophisticated and validated assays. Studies by HVTN will be complemented by studies of Project 3, which will assess in human volunteers the quality of vaccine-induced gag-specific T cell responses in relationship to pre-existing immunity to the vaccine carrier. ? ? ?
Showing the most recent 10 out of 18 publications