Mast cells orchestrate the recruitment of inflammatory cells and initiate and perpetuate allergic responses through their ability to release a wide array of inflammatory mediators, including histamine and other preformed mediators, de novo synthesized arachidonic acid metabolites (leukotrienes and prostaglandins), and numerous proinflammatory cytokines and chemokines. All have been shown to play important roles in the pathogenesis of asthma and its exacerbation. Our recent studies have begun to implicate the potent sphingolipid metabolites, sphingosine-1 -phosphate (S1P) and ceramide-1 -phosphate (C1P) and the kinases that produce them, sphingosine kinases (SphK1 and SphK2) and ceramide kinase (CerK), respectively, in regulation of degranulation of mast cells and their secretion of chemokines and cytokines, and eicosanoid synthesis (particularly PGD2 and CysLT). This proposal is aimed at enhancing understanding of the roles of these sphingolipid metabolites and the enzymes that regulate their levels in human mast cell functions in allergic responses and asthma.
In Aim 1, we will examine the involvement of S1P receptors, SphKs, and CerK in amplifying and perpetuating allergic responses of human mast cells.
Aim 2 is focused on determining how S1P is secreted by human mast cells.
In Aim 3, we will determine the effectiveness of novel inhibitors of SphKs and FTY720 analogues that target eicosanoid production, on human mast cell functions.
In Aim 4, we will determine the effectiveness of these novel inhibitors in alleviation of airway hyper-responsiveness in murine asthma models. These studies will further our understanding of the critical role of S1P and C1P in orchestrating human mast cell functions and immune reactions, providing the basis for development of therapeutic agents that target the enzymes that regulate their levels and """"""""pave the way"""""""" for the development of potent and specific drugs that potentially could be useful for treating asthma in patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI077435-02
Application #
7792228
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
2
Fiscal Year
2009
Total Cost
$218,819
Indirect Cost
Name
Virginia Commonwealth University
Department
Type
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Oyeniran, Clement; Sturgill, Jamie L; Hait, Nitai C et al. (2015) Aberrant ORM (yeast)-like protein isoform 3 (ORMDL3) expression dysregulates ceramide homeostasis in cells and ceramide exacerbates allergic asthma in mice. J Allergy Clin Immunol 136:1035-46.e6
Oskeritzian, Carole A; Hait, Nitai C; Wedman, Piper et al. (2015) The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis regulates early airway T-cell infiltration in murine mast cell-dependent acute allergic responses. J Allergy Clin Immunol 135:1008-18.e1
Kim, Eugene Y; Sturgill, Jamie L; Hait, Nitai C et al. (2014) Role of sphingosine kinase 1 and sphingosine-1-phosphate in CD40 signaling and IgE class switching. FASEB J 28:4347-58
Faber, Travis W; Pullen, Nicholas A; Fernando, Josephine F A et al. (2014) ADAM10 is required for SCF-induced mast cell migration. Cell Immunol 290:80-8
Le, Quang Trong; Lotfi-Emran, Sahar; Min, Hae-Ki et al. (2014) A simple, sensitive and safe method to determine the human ?/?-tryptase genotype. PLoS One 9:e114944
Lyons, Jonathan J; Sun, Guangping; Stone, Kelly D et al. (2014) Mendelian inheritance of elevated serum tryptase associated with atopy and connective tissue abnormalities. J Allergy Clin Immunol 133:1471-4
Martin, Rebecca K; Saleem, Sheinei J; Folgosa, Lauren et al. (2014) Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells. J Leukoc Biol 96:151-9
Morales, Johanna K; Saleem, Sheinei J; Martin, Rebecca K et al. (2014) Myeloid-derived suppressor cells enhance IgE-mediated mast cell responses. J Leukoc Biol 95:643-50
Liang, Jie; Nagahashi, Masayuki; Kim, Eugene Y et al. (2013) Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23:107-20
Nagahashi, Masayuki; Kim, Eugene Y; Yamada, Akimitsu et al. (2013) Spns2, a transporter of phosphorylated sphingoid bases, regulates their blood and lymph levels, and the lymphatic network. FASEB J 27:1001-11

Showing the most recent 10 out of 56 publications