This U19 TRIAD Technology Development proposal describes an innovative program aimed at developing a high-performance, pro-inflammatory and non-tolerogenic vaccine delivery system based on the dendritic cell targeting anti-DEC-205 antibody. The success of anti-DEC-205 as a stimulator of strong inflammatory immune responses depends on co-administration of non-specific dendritic cell maturation factors. In their absence, anti- DEC-205 induces antigen-specific tolerance rather than immunity. Because of the dangers associated with nonspecific activation of the immune system, we propose to develop a modified pro-inflammatory and nontolerogenic anti-DEC-205 antibody. We have discovered a set of natural regulatory T-cell epitopes derived from human immunoglobulins that induce tolerance by stimulating regulatory T cells. We have verified experimentally that these epitopes generate antigen-specific expansion of regulatory T cells and suppress inflammatory immune responses. We hypothesize that regulatory T-cell epitopes contained in anti-DEC-205 promote a tolerogenic reaction that is only overcome through co-administration of non-specific immunostimulators. We expect that modification of these epitopes will significantly diminish tolerogenicity, enabling use of anti-DEC-205 as a stand-alone, high performance antigen delivery system. We will de-tolerize anti-DEC-205 by epitope modification in a two-stage process beginning first in a (humanized) mouse model system and progressing to human blood samples. Using TRIAD Toolkit Core immuno-informatics algorithms, we will reengineer anti-DEC-205 such that key amino acids in its regulatory T-cell epitopes are replaced with those that are experimentally shown to interfere with HLA binding. We will then (1) produce a set of antibody variants recombinantly conjugated to test antigens including vaccine candidates identified in TRIAD Research Projects, (2) identify de-tolerizing mutations that do not interfere with dendritic cell targeting, and (3) evaluate variants for reduced tolerogenicity, as well as for enhanced immunogenicity for vaccine antigens.

Public Health Relevance

This project will improve on a vaccine delivery vehicle targeted to cells that induce immune responses. Using computational and experimental methods, the vehicle will be optimally designed to eliminate portions that suppress immune responses. A more effective vehicle potentially will stimulate immune responses to prevent and treat disease through vaccination

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI082642-01
Application #
7696406
Study Section
Special Emphasis Panel (ZAI1-KS-I (J3))
Project Start
2009-07-20
Project End
2014-06-30
Budget Start
2009-04-01
Budget End
2010-06-30
Support Year
1
Fiscal Year
2009
Total Cost
$232,303
Indirect Cost
Name
University of Rhode Island
Department
Type
DUNS #
144017188
City
Kingston
State
RI
Country
United States
Zip Code
02881
Liu, Rui; Moise, Leonard; Tassone, Ryan et al. (2015) H7N9 T-cell epitopes that mimic human sequences are less immunogenic and may induce Treg-mediated tolerance. Hum Vaccin Immunother 11:2241-52
Eickhoff, Christopher S; Van Aartsen, Daniel; Terry, Frances E et al. (2015) An immunoinformatic approach for identification of Trypanosoma cruzi HLA-A2-restricted CD8(+) T cell epitopes. Hum Vaccin Immunother 11:2322-8
Becker, Martin; Felsberger, André; Frenzel, André et al. (2015) Application of M13 phage display for identifying immunogenic proteins from tick (Ixodes scapularis) saliva. BMC Biotechnol 15:43
Losikoff, Phyllis T; Mishra, Sasmita; Terry, Frances et al. (2015) HCV epitope, homologous to multiple human protein sequences, induces a regulatory T cell response in infected patients. J Hepatol 62:48-55
Terry, Frances E; Moise, Leonard; Martin, Rebecca F et al. (2015) Time for T? Immunoinformatics addresses vaccine design for neglected tropical and emerging infectious diseases. Expert Rev Vaccines 14:21-35
Tomimaru, Yoshito; Mishra, Sasmita; Safran, Howard et al. (2015) Aspartate-?-hydroxylase induces epitope-specific T cell responses in hepatocellular carcinoma. Vaccine 33:1256-66
De Groot, Anne S; Ross, Ted M; Levitz, Lauren et al. (2015) C3d adjuvant effects are mediated through the activation of C3d-specific autoreactive T cells. Immunol Cell Biol 93:189-97
Pichu, Sivakamasundari; Ribeiro, José M C; Mather, Thomas N et al. (2014) Purification of a serine protease and evidence for a protein C activator from the saliva of the tick, Ixodes scapularis. Toxicon 77:32-9
Mishra, Sasmita; Lavelle, Bianca J; Desrosiers, Joe et al. (2014) Dendritic cell-mediated, DNA-based vaccination against hepatitis C induces the multi-epitope-specific response of humanized, HLA transgenic mice. PLoS One 9:e104606
Mishra, Sasmita; Losikoff, Phyllis T; Self, Alyssa A et al. (2014) Peptide-pulsed dendritic cells induce the hepatitis C viral epitope-specific responses of naïve human T cells. Vaccine 32:3285-92

Showing the most recent 10 out of 45 publications