Flaviviruses present a major public health problem in the US and worldwide. A role of regulatory T cells (Tregs), potent negative regulators of the adaptive and innate immune responses, in viral infection in general, and in flayivirus infection in particular, is poorly understood. We hypothesize that there are distinct qualitative and quantitative requirements for diverse manifestations of Treg function affecting virus specific responses and associated pathology. These manifestations might vary depending on time during the course of viral infection, localization (secondary lymphoid organs vs. peripheral tissues), and the specific virus type. In this application, we will employ a well-established experimental model of West Nile virus (WNV) infection in mice to investigate a role for Treg cells in flavivirus infection. In our studies, we will test the aforementioned hypotheses by taking advantage of FoxpS8'

Public Health Relevance

Flaviviruses present a major public health threat in the US and worldwide. A role of regulatory T cells, potent negative regulators of the adaptive and innate immune responses, in viral infection in general, and in flavivirus infection in particular, is poorly understood. Our studies will assist in the understanding of immunity to flavivirus infections and help identify therapeutic targets for neuroinvasive viruses that are a significant clinical problem, especially in young, elderly, and immunocompromised patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI083019-04
Application #
8453009
Study Section
Special Emphasis Panel (ZAI1-BDP-I (J3))
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
4
Fiscal Year
2012
Total Cost
$266,564
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Agner, Shannon C; Klein, Robyn S (2018) Viruses have multiple paths to central nervous system pathology. Curr Opin Neurol 31:313-317
Green, Richard; Ireton, ReneƩ C; Gale Jr, Michael (2018) Interferon-stimulated genes: new platforms and computational approaches. Mamm Genome 29:593-602
Walker, Christie L; Merriam, Audrey A; Ohuma, Eric O et al. (2018) Femur-sparing pattern of abnormal fetal growth in pregnant women from New York City after maternal Zika virus infection. Am J Obstet Gynecol 219:187.e1-187.e20
Hahn, William O; Butler, Noah S; Lindner, Scott E et al. (2018) cGAS-mediated control of blood-stage malaria promotes Plasmodium-specific germinal center responses. JCI Insight 3:
Garber, Charise; Vasek, Michael J; Vollmer, Lauren L et al. (2018) Astrocytes decrease adult neurogenesis during virus-induced memory dysfunction via IL-1. Nat Immunol 19:151-161
Bowen, James R; Zimmerman, Matthew G; Suthar, Mehul S (2018) Taking the defensive: Immune control of Zika virus infection. Virus Res 254:21-26
Johnson, Britney; VanBlargan, Laura A; Xu, Wei et al. (2018) Human IFIT3 Modulates IFIT1 RNA Binding Specificity and Protein Stability. Immunity 48:487-499.e5
Aguilar-Valenzuela, Renan; Netland, Jason; Seo, Young-Jin et al. (2018) Dynamics of Tissue-Specific CD8+ T Cell Responses during West Nile Virus Infection. J Virol 92:
Platt, Derek J; Smith, Amber M; Arora, Nitin et al. (2018) Zika virus-related neurotropic flaviviruses infect human placental explants and cause fetal demise in mice. Sci Transl Med 10:
Chow, Kwan T; Driscoll, Connor; Loo, Yueh-Ming et al. (2018) IRF5 regulates unique subset of genes in dendritic cells during West Nile virus infection. J Leukoc Biol :

Showing the most recent 10 out of 147 publications