The goal of this proposal is to elucidate the mechanisms by which the adjuvant GM-CSF enhances vaccineinduced IgG and IgA responses against SIV. These studies will take advantage ofthe unique resources made available by this consortium and ofthe complementary and integrative expertise ofthe Amara and Pulendran groups, which evaluate novel Env immunogens for the inducfion of neutralizing Abs (NAbs) (Proiect 1 and Proiect 2). the Ahmed/Silvestri/Crotty group, which explores the regulafion of Ab responses by T cells (Project 3). and the Cerutti group, which studies the regulafion of B cells by innate immune cells (Proiect 4). B cells provide immune protecfion against HIV by producing NAbs to envelope (Env) spikes on the surface ofthe virus. However, elicifing robust and sustained NAb responses remains a major obstacle, because Env, the only relevant anfigen for NAb inducfion, is characterized by sequence variafion, limited anfigenicity and scarce immunogenicity. An addifional obstacle relates to the lack of strategies capable of effectively inducing NAbs both systemically and at mucosal sites of entry. Preliminary data from the Amara group show that GM-CSF enhances the avidity and frequency of vaccine-induced SIV-reacfive IgG Abs produced in systemic lymphoid organs and elicits release of SIV-specific IgA in intesfinal secrefions. These effects correlate with increased protection against an intestinal challenge. In this proposal we hypothesize that GM-CSF mobilizes and activates a unique subset of splenic IL-21-producing NBH neutrophils equipped with B cell helper function. We contend that NBH cells enhance systemic IgG and intestinal IgA responses against SIV by inducing Ig heavy chain class switching, V(D)J gene somafic hypermutafion and gut-homing receptors in splenic B cells, including marginal zone and memory B cells.
Three aims are proposed.
Aim 1 is to elucidate the mechanism by which GM-CSF induces IgG and IgA class switching in splenic B cells.
Aim 2 is to dissect the mechanism by which GM-CSF induces intesfinal homing of splenic IgA class-switched B cells.
Aim 3 is to determine the mechanism by which GM-CSF improves the avidity of vaccine-induced systemic IgG and intesfinal IgA responses against SIV..

Public Health Relevance

B cells provide immune protecfion against HIV infecfion by producing NAbs to Env spikes on the surface of the virus. Thus far, immunization with recombinant Env subunits has failed to elicit broadly NAbs. The proposed collaborative studies will take advantage of an SIV vaccinafion model involving GM-CSF to study a novel Ab-inducing immune pathway and help develop novel adjuvant strategies for preventive HIV vaccines

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI096187-01
Application #
8198166
Study Section
Special Emphasis Panel (ZAI1-LR-A (M2))
Project Start
2011-07-07
Project End
2016-06-30
Budget Start
2011-07-07
Budget End
2012-06-30
Support Year
1
Fiscal Year
2011
Total Cost
$642,156
Indirect Cost
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Chan, Justin T H; Liu, Yanling; Khan, Srijit et al. (2018) A tyrosine sulfation-dependent HLA-I modification identifies memory B cells and plasma cells. Sci Adv 4:eaar7653
Jones, Andrew T; Chamcha, Venkateswarlu; Kesavardhana, Sannula et al. (2018) A Trimeric HIV-1 Envelope gp120 Immunogen Induces Potent and Broad Anti-V1V2 Loop Antibodies against HIV-1 in Rabbits and Rhesus Macaques. J Virol 92:
Kasturi, Sudhir Pai; Kozlowski, Pamela A; Nakaya, Helder I et al. (2017) Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5? Restrictive Macaques. J Virol 91:
Chea, Lynette Siv; Amara, Rama Rao (2017) Immunogenicity and efficacy of DNA/MVA HIV vaccines in rhesus macaque models. Expert Rev Vaccines 16:973-985
Chamcha, Venkateswarlu; Kannanganat, Sunil; Gangadhara, Sailaja et al. (2016) Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine. Open Forum Infect Dis 3:ofw034
Smith, S Abigail; Kilgore, Katie M; Kasturi, Sudhir Pai et al. (2016) Signatures in Simian Immunodeficiency Virus SIVsmE660 Envelope gp120 Are Associated with Mucosal Transmission but Not Vaccination Breakthrough in Rhesus Macaques. J Virol 90:1880-7
Cartwright, Emily K; Spicer, Lori; Smith, S Abigail et al. (2016) CD8(+) Lymphocytes Are Required for Maintaining Viral Suppression in SIV-Infected Macaques Treated with Short-Term Antiretroviral Therapy. Immunity 45:656-668
Yu, Cuiling; Liu, Yanling; Chan, Justin Tze Ho et al. (2016) Identification of human plasma cells with a lamprey monoclonal antibody. JCI Insight 1:
Havenar-Daughton, Colin; Reiss, Samantha M; Carnathan, Diane G et al. (2016) Cytokine-Independent Detection of Antigen-Specific Germinal Center T Follicular Helper Cells in Immunized Nonhuman Primates Using a Live Cell Activation-Induced Marker Technique. J Immunol 197:994-1002
Kannanganat, Sunil; Wyatt, Linda S; Gangadhara, Sailaja et al. (2016) High Doses of GM-CSF Inhibit Antibody Responses in Rectal Secretions and Diminish Modified Vaccinia Ankara/Simian Immunodeficiency Virus Vaccine Protection in TRIM5?-Restrictive Macaques. J Immunol 197:3586-3596

Showing the most recent 10 out of 54 publications