Although many diabetic patients in renal failure, especially children, have potential donors willing to provide both a kidney and islets, the quantity of islets necessary to achieve insulin independence hampers successful islet Tx by partial pancreatectomy from living donors. Project 2 is designed toward developing a tolerance-inducing strategy for curative treatment of end-stage diabetic nephropathy using living donor composite Islet-Kidney (IK) transplantation (Tx). We have previously demonstrated that the strategy of transplanting pre-vascularized islets as part of IKs in large animal models is successful, using far fewer islets than are required for Tx of free, non-vascularized islets. Both renal and islet function were restored by IK Tx across fully allogeneic barriers in nephrectomized diabetic baboons using a clinically relevant immunosuppression protocol. More recently, our preliminary data have shown the successful induction of tolerance of IKs in rhesus monkeys treated with hematopoietic cell Tx in a
Although many diabetic patients in renal failure, especially children, have potential donors who would be willing to donate both a kidney and a portion of their pancreas, the quantity of islets necessary to achieve insulin independence is currently far greater than is obtainable from the amount of pancreas that can safely be removed from the living donor. This research proposal is directed towards an approach that combines islets and a kidney into a composite
Showing the most recent 10 out of 55 publications