A. Rationale The Virus Core is an essential resource for the needs of projects 1 and 2, which will benefit from a centralized Virus Core by: i) the established expertise with reverse genetics techniques which will facilitate rescue of recombinant influenza viruses that are described below and itemized in Table 1B, ii) the maintenance of influenza virus stocks that have been sequence-confirmed and assessed for quality by hemagglutination and plaque assays, and iii) reduced inter-experimental variation by consistent use of specific virus stock preparations. The Department of Microbiology, Mount Sinai School of Medicine, NY, NY is a pioneer in the application of reverse genetics and the development of recombinant viruses. The well equipped facilities, established procedures, and properly trained personnel provide a cost-effective Virus Core that will result in efficient production of wild-type and recombinant influenza virus stocks that will be essential for projects 1 and 2. Specifically, Dr. Megan Shaw (Co-PI of project 1) and Dr. Adolfo Garcia-Sastre (Co-PI of project 2) will directly benefit by their close proximity to and direct communication with the Virus Core. B, Specific functions of the Virus Core 1) Maintain working stocks of wild-type influenza viruses for use by projects 1 and 2. 2) Generate recombinant influenza viruses for use by projects 1 and 2.
Core G: Virus Core is an essential resource for the needs of projects 1 and 2, which will benefit from: i) the established expertise with reverse genetics techniques which will facilitate rescue of recombinant influenza viruses, ii) the maintenance of sequence-confirmed, high tittered influenza virus stocks, and iii) reduced inter-experimental variation by consistent use of specific virus stock preparations.
Dornfeld, Dominik; Dudek, Alexandra H; Vausselin, Thibaut et al. (2018) SMARCA2-regulated host cell factors are required for MxA restriction of influenza A viruses. Sci Rep 8:2092 |
Heinz, Sven; Texari, Lorane; Hayes, Michael G B et al. (2018) Transcription Elongation Can Affect Genome 3D Structure. Cell 174:1522-1536.e22 |
Zhao, Nan; Sebastiano, Vittorio; Moshkina, Natasha et al. (2018) Influenza virus infection causes global RNAPII termination defects. Nat Struct Mol Biol 25:885-893 |
White, Kris M; Abreu Jr, Pablo; Wang, Hui et al. (2018) Broad Spectrum Inhibitor of Influenza A and B Viruses Targeting the Viral Nucleoprotein. ACS Infect Dis 4:146-157 |
Dornfeld, Dominik; Dudek, Alexandra H; Vausselin, Thibaut et al. (2018) Author Correction: SMARCA2-regulated host cell factors are required for MxA restriction of influenza A viruses. Sci Rep 8:7782 |
Zhang, Liang; Wang, Juan; Muñoz-Moreno, Raquel et al. (2018) Influenza Virus NS1 Protein RNA-Interactome Reveals Intron Targeting. J Virol : |
Hancock, Aidan S; Stairiker, Christopher J; Boesteanu, Alina C et al. (2018) Transcriptome Analysis of Infected and Bystander Type 2 Alveolar Epithelial Cells during Influenza A Virus Infection Reveals In Vivo Wnt Pathway Downregulation. J Virol 92: |
Pohl, Marie O; von Recum-Knepper, Jessica; Rodriguez-Frandsen, Ariel et al. (2017) Identification of Polo-like kinases as potential novel drug targets for influenza A virus. Sci Rep 7:8629 |
Martín-Vicente, María; Medrano, Luz M; Resino, Salvador et al. (2017) TRIM25 in the Regulation of the Antiviral Innate Immunity. Front Immunol 8:1187 |
García-Sastre, Adolfo (2017) Ten Strategies of Interferon Evasion by Viruses. Cell Host Microbe 22:176-184 |
Showing the most recent 10 out of 39 publications