The Broad, Long Term Objective of the Stanford ACE is to serve as the leader within the ACE network in the development, implementation, and dissemination of multiplexed mechanistic assays for ACE trials. This proposal will develop 4 creative and novel techniques for mechanistic studies that can be transferred to our Human Immune Monitoring Center (HIMC, ACE Core B). As proof-of-principle, we propose to study B cells and antibodies in Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA) and Systemic Juvenile Idiopathic Arthritis (SJIA). Nevertheless, our new techniques can be used to study any autoimmune disease, and many cell types including monocytes and T lymphocytes. This flexibility should set the Stanford ACE apart from all other ACE sites. Most autoimmune diseases are associated with serum autoantibodies used to assist with diagnosis and prognostication. Critical questions remain in the field regarding the nature of the response to self. Do autoreactive B and T cells cause disease? Are autoantibodies and immune complexes (ICs) directly pathogenic, and if so which antigens drive disease? The overarching goal of the Stanford ACE proposal is to test the hypothesis that a subset of ICs are pathogenic in adult and pediatric rheumatic diseases, and that the mechanism(s) underlying their pathogenicity include cytokines, innate immune receptors (Fc receptors, Toll Like Receptors, TLRs), and signaling pathways mediated by JAK/STAT, NFKB, RORs, NFAT, IRFs, and other transcriptional regulators. We will take advantage of a rich repository of well characterized blood samples derived from patients with SLE, RA, and SJIA. We will test the hypothesis through further development of creative new technologies including protein and peptide arrays, B cell receptor sequencing, CyTOF, and an epigenomic assay called ATAC-Seq. We will disseminate assays to HIMC (ACE Core B) and other ACE sites, and will (i.) expand application of the technologies to additional human autoimmune diseases during the ACE funding period, (ii.) collaborate with other ACE investigators on their basic science projects, and (iii.) incorporate all 4 assays and Cores into the ACE Shared Research Agenda as mechanistic core assays for clinical trials.
Understanding the mechanistic underpinnings and pathogenesis of autoimmunity will improve the diagnosis and treatment of such diseases, facilitated by novel multiplexed assays developed by the Stanford ACE.
Showing the most recent 10 out of 28 publications