The discovery of antibiotics nearly 80 years ago was a major milestone in the battle against infectious disease, yet bacterial infections continue to be a significant cause of death worldwide. In fact, management of many bacterial infections is becoming progressively more difficult due to the emergence of new and rapidly evolving pathogens with increased virulence, resistance to antibiotics, a greater ability to evade host responses, and heightened transmissibility. To reverse this trend, a systematic understanding of the complex dynamics between the pathogen and host is needed at every level of interaction, including those between cells, individuals, microbial communities, and populations. We will develop and implement an integrated experimental framework that provides systematic and complementary insights into bacterial infections encompassing single cells, animal models, and human patients, to investigate cellular genomics, transcriptional networks, and host microecologies. Three of the most deadly and costly bacterial pathogens will be used as examples to develop this framework and probe the host-pathogen interaction. Specifically, we will dissect the interaction between Mycobacterium tuberculosis and its host at the single cell level to gain a deep and highly resolved characterization of the host cellular states that contribute to susceptibility to infection. We will follow the dynamics of uropathogenic Escherichia coli (UPEC) infection in animals and humans to gain insights into the role of UPEC, the host and the host microbiome in the persistence of recurrent urinary tract infections. We will track the movement and evolution of carbapenem resistant Enterobacteriaceae (CRE) as they emerge in patient populations contributing critical details about how CRE and the resistance elements that they carry are transmitted among patients and patient populations. There are two goals of this work. One is to develop an adaptable framework of multi-omic approaches to be applied to a wide-range of pathogens for the dissection of bacterial infection at the single cell, infected individual and clinical population levels. The second is to capitalize on the output from this framework to identify points

Public Health Relevance

Bacterial infections remain a major global threat to human health despite a century of concerted effort to combat them. We will develop an integrated and universal framework of genomic approaches to identify specific host and pathogen factors linked to disease susceptibility, transmission and virulence as a consequence of the interaction of bacterial pathogens and their hosts. Data resulting from these investigations will highlight much-needed targets for novel therapeutic and intervention strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI110818-01
Application #
8710820
Study Section
Special Emphasis Panel ()
Project Start
2014-04-10
Project End
2019-03-31
Budget Start
2014-04-10
Budget End
2015-03-31
Support Year
1
Fiscal Year
2014
Total Cost
$778,440
Indirect Cost
$283,322
Name
Broad Institute, Inc.
Department
Type
DUNS #
623544785
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Cuomo, Christina A; Rhodes, Johanna; Desjardins, Christopher A (2018) Advances in Cryptococcus genomics: insights into the evolution of pathogenesis. Mem Inst Oswaldo Cruz 113:e170473
Manson, Abigail L; Abeel, Thomas; Galagan, James et al. (2018) Reply to Lee and Howden. Clin Infect Dis 66:160-161
Donaldson, G P; Ladinsky, M S; Yu, K B et al. (2018) Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360:795-800
Fernandes, Kenya E; Brockway, Adam; Haverkamp, Miriam et al. (2018) Phenotypic Variability Correlates with Clinical Outcome in Cryptococcus Isolates Obtained from Botswanan HIV/AIDS Patients. MBio 9:
Muñoz, José F; Gade, Lalitha; Chow, Nancy A et al. (2018) Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun 9:5346
Lebreton, François; Valentino, Michael D; Schaufler, Katharina et al. (2018) Transferable vancomycin resistance in clade B commensal-type Enterococcus faecium. J Antimicrob Chemother 73:1479-1486
Yadav, Vikas; Sun, Sheng; Billmyre, R Blake et al. (2018) RNAi is a critical determinant of centromere evolution in closely related fungi. Proc Natl Acad Sci U S A 115:3108-3113
Hommel, Benjamin; Mukaremera, Liliane; Cordero, Radames J B et al. (2018) Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLoS Pathog 14:e1006982
Muñoz, José F; McEwen, Juan G; Clay, Oliver K et al. (2018) Genome analysis reveals evolutionary mechanisms of adaptation in systemic dimorphic fungi. Sci Rep 8:4473
Zhang, Wei; Lun, Shichun; Wang, Shu-Huan et al. (2018) Identification of Novel Coumestan Derivatives as Polyketide Synthase 13 Inhibitors Against Mycobacterium Tuberculosis. J Med Chem :

Showing the most recent 10 out of 95 publications