Through the activities in this Technology Core, we will provide comprehensive high-throughput genome sequencing and analysis to the investigators participating in this U19 proposal to advance research in all four projects that are focused on understanding host, pathogen, and microbiome interactions as determinants of infectious disease outcome. We will provide standard high throughput genome, transcriptome, metagenome, metatranscriptome, and single cell sequencing as well as other standard sequencing methods required by our Viral, Bacterial, Fungal, and Parasite research projects and any future collaborative pilot projects. This includes sequencing on every major sequencing platform including Illumina, Pacific Biosciences, and Oxford Nanopore. We will also provide custom sequencing approaches for the study of infectious disease, when necessary, building on our immense experience on sequence and analysis of polymicrobial samples. We will use the latest sequencing and analysis tools to improve genome annotation, providing an important resource to the infectious disease community. We will focus our research and development activities on developing a robust single cell transcriptomics for the analysis of host-pathogen samples, including single cell transcriptomics on prokaryotic pathogens lacking polyadenylated transcripts. We will encourage and support the implementation and analysis of genome editing approaches that are described within the projects. Lastly, we will integrate our Technology and Data Cores to seamlessly transition sequencing data and novel analysis tools generated in the Technology Core to the Data Core.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Maryland Baltimore
United States
Zip Code
Liu, Hong; Xu, Wenjie; Solis, Norma V et al. (2018) Functional convergence of gliP and aspf1 in Aspergillus fumigatus pathogenicity. Virulence 9:1062-1073
Richter, Taylor K S; Michalski, Jane M; Zanetti, Luke et al. (2018) Responses of the Human Gut Escherichia coli Population to Pathogen and Antibiotic Disturbances. mSystems 3:
Ouattara, Amed; Tran, Tuan M; Doumbo, Safiatou et al. (2018) Extent and Dynamics of Polymorphism in the Malaria Vaccine Candidate Plasmodium falciparum Reticulocyte-Binding Protein Homologue-5 in Kalifabougou, Mali. Am J Trop Med Hyg 99:43-50
Mendes, António M; Machado, Marta; Gonçalves-Rosa, Nataniel et al. (2018) A Plasmodium berghei sporozoite-based vaccination platform against human malaria. NPJ Vaccines 3:33
Chung, Matthew; Teigen, Laura; Libro, Silvia et al. (2018) Multispecies Transcriptomics Data Set of Brugia malayi, Its Wolbachia Endosymbiont wBm, and Aedes aegypti across the B. malayi Life Cycle. Microbiol Resour Announc 7:
Watkins, Tonya N; Liu, Hong; Chung, Matthew et al. (2018) Comparative transcriptomics of Aspergillus fumigatus strains upon exposure to human airway epithelial cells. Microb Genom :
Robertson, Colin D; Hazen, Tracy H; Kaper, James B et al. (2018) Phosphotyrosine-Mediated Regulation of Enterohemorrhagic Escherichia coli Virulence. MBio 9:
Ndungo, Esther; Randall, Arlo; Hazen, Tracy H et al. (2018) A Novel Shigella Proteome Microarray Discriminates Targets of Human Antibody Reactivity following Oral Vaccination and Experimental Challenge. mSphere 3:
Hazen, Tracy H; Mettus, Roberta; McElheny, Christi L et al. (2018) Diversity among blaKPC-containing plasmids in Escherichia coli and other bacterial species isolated from the same patients. Sci Rep 8:10291
Chung, Matthew; Teigen, Laura; Liu, Hong et al. (2018) Targeted enrichment outperforms other enrichment techniques and enables more multi-species RNA-Seq analyses. Sci Rep 8:13377

Showing the most recent 10 out of 55 publications