The proposed administrative core will provide administrative and data management support for the four scientific projects and four scientific cores that make up the TB Research Unit. Lead by the TBRU co-PIs, the Administrative Core will house the data management center that integrates and archives the data generated in each of the projects; will ensure smooth communication between the projects and between the TBRU and other stakeholder by scheduling and managing regular communications; will monitor milestones and timelines; will develop a collaborative projects program; will ensure fiscal accountability; and will identify and help to resolve any problems that arise during the grant period. In addition, the core will manage data and other resource sharing.

Public Health Relevance

The proposed administrative core will help ensure the success ofthe TB research unit by providing support for the individual scientific projects and scientific cores. The Core will ensure smooth communication and efficient use of the data generated through these projects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI111224-06
Application #
9857536
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2020-02-01
Budget End
2021-01-31
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
James, Charlotte A; Yu, Krystle K Q; Gilleron, Martine et al. (2018) CD1b Tetramers Identify T Cells that Recognize Natural and Synthetic Diacylated Sulfoglycolipids from Mycobacterium tuberculosis. Cell Chem Biol 25:392-402.e14
Mizoguchi, Fumitaka; Slowikowski, Kamil; Wei, Kevin et al. (2018) Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat Commun 9:789
Davenport, Emma E; Amariuta, Tiffany; Gutierrez-Arcelus, Maria et al. (2018) Discovering in vivo cytokine-eQTL interactions from a lupus clinical trial. Genome Biol 19:168
Carette, Xavier; Platig, John; Young, David C et al. (2018) Multisystem Analysis of Mycobacterium tuberculosis Reveals Kinase-Dependent Remodeling of the Pathogen-Environment Interface. MBio 9:
Lehmann, Johannes; Cheng, Tan-Yun; Aggarwal, Anup et al. (2018) An Antibacterial ?-Lactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis. Angew Chem Int Ed Engl 57:348-353
Wun, Kwok S; Reijneveld, Josephine F; Cheng, Tan-Yun et al. (2018) T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids. Nat Immunol 19:397-406
Madigan, Cressida A; Cambier, C J; Kelly-Scumpia, Kindra M et al. (2017) A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy. Cell 170:973-985.e10
Moody, D Branch (2017) How T cells grasp mycobacterial lipid antigens. Proc Natl Acad Sci U S A 114:13312-13314
Brennan, Patrick J; Cheng, Tan-Yun; Pellicci, Daniel G et al. (2017) Structural determination of lipid antigens captured at the CD1d-T-cell receptor interface. Proc Natl Acad Sci U S A 114:8348-8353
Rao, Deepak A; Gurish, Michael F; Marshall, Jennifer L et al. (2017) Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542:110-114

Showing the most recent 10 out of 49 publications