The broad objective of Project 3 is to study the mechanisms responsible for the fidelity of DNA synthesis andthus to address the most fundamental questions concerning mutagenesis, a root cause of cancer. Ourspecific approach is to investigate the fidelity of DNA polymerase beta, a key repair polymerase. Varients ofpol beta are associated with genome instability and human cancer. The unique aspect of Project 3 is that byclosely integrating its specific aims with those proposed for the structural characterization of Pol beta inProject 1 and the the theoretical computational study in Project 2, we can test quantitative predictions forhow active site amino acids govern the choice between incorporating right and wrong deoxynucleotidesubstrates. By providing a stringent test of theoretical-computational and structural predictions, the data willplay a key role in refining the theoretical models. Project 3 investigates dNTP substrate transition stateanalogs to provide new mechanistic information concerning the source of free energy available to enablepolymerases to distinguish right from wrong. The main experimental approach involves the use offluorescence and rapid quench presteady state kinetic techniques to measure overall fidelity as well asindividual fidelity base substitution and frameshift fidelity components. Project 3 will investigate geneticinstability more generally by constructing model in vitro systems to study the effects of strand displacementsynthesis on the expansion of mono- and dinucleotide repeat sequences yielding frameshift mutation thatcause cancer. The Program Project generally, and Experiment 3 more specifically, are timely given theresurgence of interest in the role of DNA polymerases in causing cancer. The studies in Experiment 3 ontransition state analogs, taken in conjunction with the structural and computational projects, should providepractical payoffs in pharmaceutical anticancer drug design, and offer a logical framework in which to designdrug intervention and prevention strategies to inhibit cancer progression. Project 3 features a newconsortium collaborator, Joann Sweasy, Yale University, who will indentify and characterize human tumorassociatedpol beta variants in Experiment 5.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program--Cooperative Agreements (U19)
Project #
2U19CA105010-05
Application #
7464339
Study Section
Special Emphasis Panel (ZCA1-GRB-S (J1))
Project Start
2008-08-01
Project End
2013-07-13
Budget Start
2008-09-26
Budget End
2009-07-31
Support Year
5
Fiscal Year
2008
Total Cost
$429,140
Indirect Cost
Name
University of Southern California
Department
Type
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Mondal, Dibyendu; Warshel, Arieh (2018) EF-Tu and EF-G are activated by allosteric effects. Proc Natl Acad Sci U S A 115:3386-3391
Perera, Lalith; Freudenthal, Bret D; Beard, William A et al. (2017) Revealing the role of the product metal in DNA polymerase ? catalysis. Nucleic Acids Res 45:2736-2745
Shock, David D; Freudenthal, Bret D; Beard, William A et al. (2017) Modulating the DNA polymerase ? reaction equilibrium to dissect the reverse reaction. Nat Chem Biol 13:1074-1080
Yoon, Hanwool; Warshel, Arieh (2017) Simulating the fidelity and the three Mg mechanism of pol ? and clarifying the validity of transition state theory in enzyme catalysis. Proteins 85:1446-1453
Perera, Lalith; Beard, William A; Pedersen, Lee G et al. (2017) Hiding in Plain Sight: The Bimetallic Magnesium Covalent Bond in Enzyme Active Sites. Inorg Chem 56:313-320
Yoon, Hanwool; Kolev, Vesselin; Warshel, Arieh (2017) Validating the Water Flooding Approach by Comparing It to Grand Canonical Monte Carlo Simulations. J Phys Chem B 121:9358-9365
Astumian, R Dean; Mukherjee, Shayantani; Warshel, Arieh (2016) The Physics and Physical Chemistry of Molecular Machines. Chemphyschem 17:1719-41
Matute, Ricardo A; Yoon, Hanwool; Warshel, Arieh (2016) Exploring the mechanism of DNA polymerases by analyzing the effect of mutations of active site acidic groups in Polymerase ?. Proteins 84:1644-1657
Yoon, Hanwool; Warshel, Arieh (2016) The control of the discrimination between dNTP and rNTP in DNA and RNA polymerase. Proteins 84:1616-1624
Vorobyov, Igor; Kim, Ilsoo; Chu, Zhen T et al. (2016) Refining the treatment of membrane proteins by coarse-grained models. Proteins 84:92-117

Showing the most recent 10 out of 95 publications