Finally, in area 3 we propose to perform detailed studies to charaderize the effeds of genetic variation on risk for lung cancer, allowing for effects from tobacco smoke and a limited set of additional environmental exposures that have been collected as a part of ILCCO. We will also explore the effects of genetic variation on smoking phenotypes. Area 3 analyses will allow a careful assessment of the joint effects of smoking and genetic exposures for a range of populations having different smoking behaviors, genetic backgrounds and effects from potential confounding fadors such as diet that have been measured in many cases, but with imprecision. In addition, we will be evaluating existing procedures for characterizing the risk for lung cancer according to age, sex, smoking behavior and demographic and medical history factors. We will also extend these models to include the results from the proposed genetic studies that we are conduding. The final product will be the development of a clearer view of lung carcinogenesis as well as better tools for identifying individuals at high risk to develop lung cancer. Identifying such people is an important goal, since there remain no approved screening mortalities for lung cancer in asymptomatic individuals because of a low positive predidive value of such approaches in the general population, and concern about the potential risks and costs associated with screening.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dartmouth College
United States
Zip Code
Feng, Yun; Wang, Yanru; Liu, Hongliang et al. (2018) Novel genetic variants in the P38MAPK pathway gene ZAK and susceptibility to lung cancer. Mol Carcinog 57:216-224
Li, Yafang; Xiao, Xiangjun; Han, Younghun et al. (2018) Genome-wide interaction study of smoking behavior and non-small cell lung cancer risk in Caucasian population. Carcinogenesis 39:336-346
Allen, Julie K; Armaiz-Pena, Guillermo N; Nagaraja, Archana S et al. (2018) Sustained Adrenergic Signaling Promotes Intratumoral Innervation through BDNF Induction. Cancer Res 78:3233-3242
Sandanger, Torkjel Manning; Nøst, Therese Haugdahl; Guida, Florence et al. (2018) DNA methylation and associated gene expression in blood prior to lung cancer diagnosis in the Norwegian Women and Cancer cohort. Sci Rep 8:16714
Ji, Xuemei; Bossé, Yohan; Landi, Maria Teresa et al. (2018) Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun 9:3221
Gorlov, Ivan P; Pikielny, Claudio W; Frost, Hildreth R et al. (2018) Gene characteristics predicting missense, nonsense and frameshift mutations in tumor samples. BMC Bioinformatics 19:430
Wang, Zhaoxi; Wei, Yongyue; Zhang, Ruyang et al. (2018) Multi-Omics Analysis Reveals a HIF Network and Hub Gene EPAS1 Associated with Lung Adenocarcinoma. EBioMedicine 32:93-101
Ferreiro-Iglesias, Aida; Lesseur, Corina; McKay, James et al. (2018) Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity. Nat Commun 9:3927
Hancock, D B; Guo, Y; Reginsson, G W et al. (2018) Genome-wide association study across European and African American ancestries identifies a SNP in DNMT3B contributing to nicotine dependence. Mol Psychiatry 23:1-9
Pan, Yongchu; Liu, Hongliang; Wang, Yanru et al. (2017) Associations between genetic variants in mRNA splicing-related genes and risk of lung cancer: a pathway-based analysis from published GWASs. Sci Rep 7:44634

Showing the most recent 10 out of 142 publications