We will use computational techniques that were previously developed and tested by our research group in studies of DNA replication and related biochemical processes. These computer simulations will systematically examine changes in the activation barrier of the chemical step due to different factors including the effects of point mutations of distant pol B residues, to substitutions of the p-y bridging oxygen by the - C X Y - groups where X. Y = H, CH3, F, CI, Br or N3, and substitutions in the deoxyribose residues of the primer or dNTP nucleotides. Additionally, calculations of the substrate binding in its ground- and transition-state configurations will be investigated by proven computational strategies with extended simulation times. The results of the simulations (including TS structures and charge distributions as well as simulation protocols) will form a database that will include numerous experimentally-testable predictions along with the list of the assumptions and theoretical models that were used to generate these predictions. This database, which will be made accessible online, will be continually updated with new experimental and computational results, helping in selecting the best models and simulation strategies, and eventually to understanding of the functionally important properties of DNA polymerases at the atomic level. Additionally, the comparative studies will help in selecting the most effective approach for computational inhibitor and mutational screening.

Public Health Relevance

The integration of structural, biochemical and computational studies of DNA replication fidelity requires a collaborative approach, where the theoretical analysis should be treated as an integral part of the experimental effort. Thus, the proposed core will focus on supporting Projects 1-3 with routine calculations of the properties of DNA polymerase B(pol B).

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19CA177547-02
Application #
8754985
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Southern California
Department
Type
DUNS #
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Oertell, Keriann; Kashemirov, Boris A; Negahbani, Amirsoheil et al. (2018) Probing DNA Base-Dependent Leaving Group Kinetic Effects on the DNA Polymerase Transition State. Biochemistry 57:3925-3933
Alnajjar, Khadijeh S; Garcia-Barboza, Beatriz; Negahbani, Amirsoheil et al. (2017) A Change in the Rate-Determining Step of Polymerization by the K289M DNA Polymerase ? Cancer-Associated Variant. Biochemistry 56:2096-2105
Alnajjar, Khadijeh S; Negahbani, Amirsoheil; Nakhjiri, Maryam et al. (2017) DNA Polymerase ? Cancer-Associated Variant I260M Exhibits Nonspecific Selectivity toward the ?-? Bridging Group of the Incoming dNTP. Biochemistry 56:5449-5456
Ni, Feng; Kung, Alvin; Duan, Yankun et al. (2017) Remarkably Stereospecific Utilization of ATP ?,?-Halomethylene Analogues by Protein Kinases. J Am Chem Soc 139:7701-7704
Petruska, John; Goodman, Myron F (2017) Relating DNA base-pairing in aqueous media to DNA polymerase fidelity. Nat Rev Chem 1:
Yoon, Hanwool; Warshel, Arieh (2017) Simulating the fidelity and the three Mg mechanism of pol ? and clarifying the validity of transition state theory in enzyme catalysis. Proteins 85:1446-1453
Maximoff, Sergey N; Kamerlin, Shina Caroline Lynn; Florián, Jan (2017) DNA Polymerase ? Active Site Favors a Mutagenic Mispair between the Enol Form of Deoxyguanosine Triphosphate Substrate and the Keto Form of Thymidine Template: A Free Energy Perturbation Study. J Phys Chem B 121:7813-7822
Matute, Ricardo A; Yoon, Hanwool; Warshel, Arieh (2016) Exploring the mechanism of DNA polymerases by analyzing the effect of mutations of active site acidic groups in Polymerase ?. Proteins 84:1644-1657
Kim, Taejin; Freudenthal, Bret D; Beard, William A et al. (2016) Insertion of oxidized nucleotide triggers rapid DNA polymerase opening. Nucleic Acids Res 44:4409-24
Je?ábek, Petr; Florián, Jan; Martínek, Václav (2016) Lipid molecules can induce an opening of membrane-facing tunnels in cytochrome P450 1A2. Phys Chem Chem Phys 18:30344-30356

Showing the most recent 10 out of 46 publications