(Project 1: The peripheral representation of odor space) Progress towards an understanding of olfactory coding has been hampered by long-standing hurdles created by the nature of the stimulus and the complexity of the underlying sensory biology. At the same time, a description of olfactory coding in mammals would provide a unique window into how multidimensional stimuli are represented by the mammalian brain. Olfactory systems use large families of odorant receptors to detect a vast number of chemical stimuli. An important challenge that must be overcome to better understand olfaction is to establish a comprehensive description of what features of olfactory stimuli are represented by the system. Doing so requires that we overcome previously insurmountable technical challenges in identifying the stimulus specificity of a large number of receptors to a large number of odorants, and that we generate a theoretical framework for quantifying and exploring the multidimensional ?space? of odors and receptors. Here, we propose an interdisciplinary effort to comprehensively characterize the odorant response properties of a large number of odorant receptors in vivo, and to use this information to explicitly and rigorously test novel models of odor coding. This project exploits the one-to-one correspondence between odorant receptors and glomeruli in the olfactory bulb of mice.
Aim 1 will characterize the sensitivities of a large number of receptors (glomeruli) in awake, intact animals using functional imaging.
Aim 2 will map these glomerular responses to specific receptors using emerging spatial transcriptomics methods.
Aim 3 will use a powerful genomics-based assay to identify the highest affinity receptors for a large set of individual odors.
Aim 4 will test a novel theoretical framework for understanding how odor features are represented. This large-scale in vivo multidisciplinary approach will provide long-sought data and analytical tools to rigorously explore potential models of odor coding.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19NS112953-02
Application #
10001611
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
2
Fiscal Year
2020
Total Cost
Indirect Cost
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016