The goal of Associate Program 3 is to use and further our understanding of the chemical ecology of coral reef organisms to better inform drug discovery and to provide new and more effective management options for conserving and restoring the diversity and ecological function of coral reefs. We will collaborate with APs 1,2, and 4 to apply ecologically meaningful stresses to species (activation, induction) to enhance the diversity or potency of bioactive metabolites they are producing. Our conservation efforts will focus on further determining the critical role that chemical cues from benthic organisms play in suppressing (seaweeds) or stimulating (corals) recruitment of corals and fishes that must colonize for damaged reefs to recover. We will determine which cuing species are most critical, the variance in response of fishes as a function of trophic group and taxonomy, and whether fishes and corals are responding to the same general cues. Collaborations with AP2 will attempt to identify some of the major metabolites involved. We will scale-up our laboratory and small-scale field experiments to test whether we can initiate reef recovery on scales of 100m2 on degraded reefs in 3 replicate villages on the Coral Coast. This will be accomplished via removal of suppressive seaweeds, addition of stimulatory corals, both, and neither. The recruitment, survival and growth of individual corals will then be followed as will the physical condition and growth rates of newly recruiting fishes. At still larger scales we will evaluate the influence of water-shed scale land use patterns (native vegetation vs introduced mahogany, sugar cane, or oil palm) on chemical cues affecting fish recruitment to adjacent reefs and whether the negative effects of agricultural crops are negated by runoff progressing through coastal mangroves. If so, this provides a management strategy for retaining both coastal agriculture and fishes. At smaller scales, we will conduct metatranscriptomic analyses of the coral host, its zooxanthellae, and its microbiomes through time following coral contact with allelopathic seaweeds to determine the roles of microbially mediated processes in the negative impacts of seaweed on corals. We will cultivate and investigate the roles of microbes from healthy versus stressed corals, test the effects of seaweed extracts on coral-associated bacteria, and assess whether commensal microbes chemically protect corals from microbial pathogens. If so, we will work with AP2 to further investigate the antagonistic interactions and the chemicals involved.

Agency
National Institute of Health (NIH)
Institute
Fogarty International Center (FIC)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19TW007401-14
Application #
9542406
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2018-08-01
Budget End
2019-07-31
Support Year
14
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Georgia Institute of Technology
Department
Type
DUNS #
097394084
City
Atlanta
State
GA
Country
United States
Zip Code
30318
Beatty, Deanna S; Clements, Cody S; Stewart, Frank J et al. (2018) Intergenerational effects of macroalgae on a reef coral: major declines in larval survival but subtle changes in microbiomes. Mar Ecol Prog Ser 589:97-114
Chhetri, Bhuwan Khatri; Lavoie, Serge; Sweeney-Jones, Anne Marie et al. (2018) Recent trends in the structural revision of natural products. Nat Prod Rep 35:514-531
Clements, Cody S; Rasher, Douglas B; Hoey, Andrew S et al. (2018) Spatial and temporal limits of coral-macroalgal competition: the negative impacts of macroalgal density, proximity, and history of contact. Mar Ecol Prog Ser 586:11-20
Clements, Cody S; Hay, Mark E (2018) Overlooked coral predators suppress foundation species as reefs degrade. Ecol Appl 28:1673-1682
Demko, Alyssa M; Amsler, Charles D; Hay, Mark E et al. (2017) Declines in plant palatability from polar to tropical latitudes depend on herbivore and plant identity. Ecology 98:2312-2321
Millán-Aguiñaga, Natalie; Chavarria, Krystle L; Ugalde, Juan A et al. (2017) Phylogenomic Insight into Salinispora (Bacteria, Actinobacteria) Species Designations. Sci Rep 7:3564
Bonaldo, Roberta M; Pires, Mathias M; Guimarães Junior, Paulo Roberto et al. (2017) Small Marine Protected Areas in Fiji Provide Refuge for Reef Fish Assemblages, Feeding Groups, and Corals. PLoS One 12:e0170638
Patin, Nastassia V; Schorn, Michelle; Aguinaldo, Kristen et al. (2017) Effects of Actinomycete Secondary Metabolites on Sediment Microbial Communities. Appl Environ Microbiol 83:
Amos, Gregory C A; Awakawa, Takayoshi; Tuttle, Robert N et al. (2017) Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proc Natl Acad Sci U S A 114:E11121-E11130
Asolkar, Ratnakar N; Singh, Ahilya; Jensen, Paul R et al. (2017) Marinocyanins, cytotoxic bromo-phenazinone meroterpenoids from a marine bacterium from the streptomycete clade MAR4. Tetrahedron 73:2234-2241

Showing the most recent 10 out of 69 publications