The Vanderbilt Mouse Metabolic Phenotyping Center (VMMPC) was founded in 2001 to advance medical and biological research by providing the scientific community with standardized, high quality phenotyping services for mouse models of diabetes, diabetic complications, and obesity. The VMMPC consists of five cores. The Administrative Core provides scientific, financial, and administrative leadership, and interacts with NIH program officials and the National Executive Steering Committee. The Administrative Core also oversees service requests, data management, and tracks mice studied at the VMMPC. The Animal Care and Welfare Core evaluates mice submitted to the VMMPC for any pathology, oversees the health and welfare of the colony, and ensures compliance with animal use regulatory bodies and the National MMPC Animal Care and Use Committee. The Metabolic Pathophysiology (MPC), the Cardiovascular Pathophysiology and Complications (CPCC), and the Analytical Resources (ARC) Core Laboratories perform the phenotyping procedures. Services provided by the MPC emphasize methodology to study energy balance, insulin action, hormone secretion, and metabolism in the conscious, unstressed mouse. The MPC also has the capacity to assess organ or islet function in isolation and can apply state-of-the-art imaging techniques. The CPCC has comprehensive non-invasive and minimally invasive testing for cardiovascular disease and other complications of diabetes. The ARC receives samples generated from VMMPC testing and from experiments conducted outside the VMMPC. Analyses performed by this core are specific to the mouse and are scaled to accommodate the small sample volumes obtained from the mouse. The VMMPC exists because of the insight of leadership at the NIDDK, a generous commitment of space and resources from VUMC, and a well-conceived infrastructure. But the main reason the VMMPC works as well as it does is the people that comprise it. This NIDDK experiment in mouse phenotyping requires a faculty that is willing to make technology that is part of their research lifeline available to the scientific community for no more than the recovery of costs and the knowledge that they are working for a greater good. It requires a staff that is so skilled and committed that scientists are willing to entrust their mice, their research lifelines, with them.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Resource-Related Research Projects--Cooperative Agreements (U24)
Project #
5U24DK059637-08
Application #
7433715
Study Section
Special Emphasis Panel (ZDK1-GRB-9 (M1))
Program Officer
Abraham, Kristin M
Project Start
2001-07-15
Project End
2011-05-31
Budget Start
2008-06-01
Budget End
2009-05-31
Support Year
8
Fiscal Year
2008
Total Cost
$876,405
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Physiology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Hunter, Roger W; Hughey, Curtis C; Lantier, Louise et al. (2018) Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat Med 24:1395-1406
Perez, Katia M; Curley, Kathleen L; Slaughter, James C et al. (2018) Glucose Homeostasis and Energy Balance in Children With Pseudohypoparathyroidism. J Clin Endocrinol Metab 103:4265-4274
Creecy, Amy; Uppuganti, Sasidhar; Unal, Mustafa et al. (2018) Low bone toughness in the TallyHO model of juvenile type 2 diabetes does not worsen with age. Bone 110:204-214
Babaev, Vladimir R; Ding, Lei; Zhang, Youmin et al. (2018) Loss of 2 Akt (Protein Kinase B) Isoforms in Hematopoietic Cells Diminished Monocyte and Macrophage Survival and Reduces Atherosclerosis in Ldl Receptor-Null Mice. Arterioscler Thromb Vasc Biol :ATVBAHA118312206
Zhang, Ming-Zhi; Wang, Suwan; Wang, Yinqiu et al. (2018) Renal Medullary Interstitial COX-2 (Cyclooxygenase-2) Is Essential in Preventing Salt-Sensitive Hypertension and Maintaining Renal Inner Medulla/Papilla Structural Integrity. Hypertension 72:1172-1179
Santos Guasch, Gabriela L; Beeler, J Scott; Marshall, Clayton B et al. (2018) p73 Is Required for Ovarian Follicle Development and Regulates a Gene Network Involved in Cell-to-Cell Adhesion. iScience 8:236-249
Kjøbsted, Rasmus; Hingst, Janne R; Fentz, Joachim et al. (2018) AMPK in skeletal muscle function and metabolism. FASEB J 32:1741-1777
Kovtun, Oleg; Tomlinson, Ian D; Bailey, Danielle M et al. (2018) Single Quantum Dot Tracking Illuminates Neuroscience at the Nanoscale. Chem Phys Lett 706:741-752
Russart, Kathryn L G; Huk, Danielle; Nelson, Randy J et al. (2018) Elevated aggressive behavior in male mice with thyroid-specific Prkar1a and global Epac1 gene deletion. Horm Behav 98:121-129
Choksi, Yash A; Reddy, Vishruth K; Singh, Kshipra et al. (2018) BVES is required for maintenance of colonic epithelial integrity in experimental colitis by modifying intestinal permeability. Mucosal Immunol 11:1363-1374

Showing the most recent 10 out of 661 publications